47 research outputs found

    On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles

    Full text link
    Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO 2 doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level cloud amount) contribute most to this figure in the CFMIP ensemble, while areas of negative cloud feedback (associated with increases in low level cloud amount and optical thickness) contribute most in QUMP. Classes associated with high-top cloud feedbacks are responsible for 33 and 20% of the cloud feedback contribution in CFMIP and QUMP, respectively, while classes where no particular cloud type stands out are responsible for 8 and 21%.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45863/1/382_2006_Article_111.pd

    High On/Off Conductance Switching Ratio via H-Tautomerization in Quinone

    Full text link
    © 2015 American Chemical Society. Through first-principles electron transport simulations using the nonequilibrium Green's function formalism together with density functional theory, we show that, upon H-tautomerization, a simple derivative of quinone can act as a molecular switch with high ON/OFF ratio, up to 70 at low bias voltage. This switching behavior is explained by the quantum interference effect, where the positional change of hydrogen atoms causes the energies of the transmission channels to overlap. Our results suggest that this molecule could have potential applications as an effective switching device. (Graph Presented)

    Multiple CO<inf>2</inf> capture in stable metal-doped graphene: A theoretical trend study

    Full text link
    © The Royal Society of Chemistry 2015. Identifying stable systems with high CO2 adsorption capacity is an essential goal in CO2 capture and storage technologies. We have carried out a comprehensive first-principles study to explore the CO2 capture capacity of 16 representative metal-doped graphene systems where the metal dopants can be stabilized by single- and double-vacancies. The maximum number of adsorbed CO2 molecules was determined by a combination of adsorption energy and bond distance criteria. Generally, while the double-vacancy can bind metal dopants more strongly than the single-vacancy, single-vacancy graphene with metal dopants are better sorbents, with each Ca, Sc and Y dopant binding up to 5 CO2 molecules. CO2 capture involves significant charge transfer between the CO2 molecule and the dopant-vacancy complexes, where defective graphene acts as a charge reservoir for binding CO2 molecules. Some systems are predicted to involve the formation of a bent CO2 anion. Ca-doped single- and double-vacancy graphene systems, however, readily form oxides upon reaction with CO2, thus they are less reusable for CO2 capture

    Endohedral metallofullerenes, M@C₆₀ (M = Ca, Na, Sr): Selective adsorption and sensing of open-shell NOx gases

    Full text link
    Based on density-functional theory and non-equilibrium Green\u27s function calculations, we demonstrate that endohedral metallofullerenes (EMFs) are reactive to open-shell gases, and therefore have the potential application as selective open-shell gas sensors.</p

    TDDFT Study of the Optical Excitation of Nucleic Acid Bases-C<inf>60</inf> Complexes

    Full text link
    © 2017 American Chemical Society. The potential of C60 as a nucleic acid base (NAB) optical sensor is theoretically explored. We investigate the adsorption of four NABs, namely, adenine, cytosine, guanine, and thymine, on C60 in the gas phase. For the optimal NAB@C60 adsorption configurations, obtained using a dispersion-corrected density functional, we calculate the vis-near-ultraviolet optical response using time-dependent density functional theory. While the isolated C60 and NAB molecules do not exhibit visible optical excitation, we find that C60/NAB conjugation gives rise to distinct spectral features in the visible range. These results suggest that C60 conjugation can be applied for photodetection of individual NABs

    Near-Perfect Spin Filtering and Negative Differential Resistance in an Fe(II)S Complex

    Full text link
    © 2017 American Chemical Society. Density functional theory and nonequilibrium Green's function calculations have been used to explore spin-resolved transport through the high-spin state of an iron(II)sulfur single molecular magnet. Our results show that this molecule exhibits near-perfect spin filtering, where the spin-filtering efficiency is above 99%, as well as significant negative differential resistance centered at a low bias voltage. The rise in the spin-up conductivity up to the bias voltage of 0.4 V is dominated by a conductive lowest unoccupied molecular orbital, and this is accompanied by a slight increase in the magnetic moment of the Fe atom. The subsequent drop in the spin-up conductivity is because the conductive channel moves to the highest occupied molecular orbital, which has a lower conductance contribution. This is accompanied by a drop in the magnetic moment of the Fe atom. These two exceptional properties, and the fact that the onset of negative differential resistance occurs at low bias voltage, suggests the potential of the molecule in nanoelectronic and nanospintronic applications
    corecore