4 research outputs found

    Cooling of the Earth and core formation after the giant impact

    No full text
    Kelvin calculated the age of the Earth to be about 24 million years by assuming conductive cooling from being fully molten to its current state. Although simplistic, his result is interesting in the context of the dramatic cooling that took place after the putative Moon-forming giant impact, which contributed the final approximately 10 per cent of the Earth's mass. The rate of accretion and core segregation on Earth as deduced from the U-Pb system is much slower than that obtained from Hf-W systematics, and implies substantial accretion after the Moon-forming impact, which occurred 45 +/- 5 Myr after the beginning of the Solar System. Here we propose an explanation for the two timescales. We suggest that the Hf-W timescale reflects the principal phase of core-formation before the giant impact. Crystallization of silicate perovskite in the lower mantle during this phase produced Fe(3+), which was released during the giant impact, and this oxidation resulted in late segregation of sulphur-rich metal into which Pb dissolved readily, setting the younger U-Pb age of the Earth. Separation of the latter metal then occurred 30 +/- 10 Myr after the Moon-forming impact. Over this time span, in surprising agreement with Kelvin's result, the Earth cooled by about 4,000 K in returning from a fully molten to a partially crystalline state

    Accretion of the Earth and segregation of its core.

    No full text
    The Earth took 30-40 million years to accrete from smaller 'planetesimals'. Many of these planetesimals had metallic iron cores and during growth of the Earth this metal re-equilibrated with the Earth's silicate mantle, extracting siderophile ('iron-loving') elements into the Earth's iron-rich core. The current composition of the mantle indicates that much of the re-equilibration took place in a deep (> 400 km) molten silicate layer, or 'magma ocean', and that conditions became more oxidizing with time as the Earth grew. The high-pressure nature of the core-forming process led to the Earth's core being richer in low-atomic-number elements, notably silicon and possibly oxygen, than the cores of the smaller planetesimal building blocks
    corecore