267 research outputs found
Charge amplification in sub-atmospheric CF4:He mixtures for directional dark matter searches
Low pressure gaseous Time Projection Chambers (TPCs) are a viable technology for directional Dark Matter (DM) searches and have the potential for exploring the parameter space below the neutrino fog [1,2]. Gases like CF4 are advantageous because they contain flourine which is predicted to have heightened elastic scattering rates with a possible Weakly Interacting Massive Particle (WIMP) DM candidate [3,4,5]. The low pressure of CF4 must be maintained, ideally lower than 100 Torr, in order to elongate potential Nuclear Recoil (NR) tracks which allows for improved directional sensitivity and NR/Electron Recoil (ER) discrimination [6]. Recent evidence suggests that He can be added to heavier gases, like CF4, without significantly affecting the length of 12C and 19F recoils due to its lower mass. Such addition of He has the advantage of improving sensitivity to lower mass WIMPs [1]. Simulations can not reliably predict operational stability in these low pressure gas mixtures and thus must be demonstrated experimentally. In this paper we investigate how the addition of He to low pressure CF4 affects the gas gain and energy resolution achieved with a single Thick Gaseous Electron Multiplier (ThGEM)
Directional dark matter readout with a novel multi-mesh ThGEM for SF6 negative ion operation
Direct searches for Weakly Interacting Massive Particle (WIMP) dark matter could greatly benefit from directional measurement of the expected induced nuclear recoils. Gas-based Time Projection Chambers (TPCs) offer potential for this, opening the possibility of measuring WIMP signals below the so-called neutrino floor but also of directional measurement of recoils induced by neutrinos from the Sun, for instance as proposed by the CYGNUS collaboration. Presented here for the first time are results from a Multi-Mesh Thick Gas Electron Multiplier (MM-ThGEM) using negative ion gases for operation with such a directional dark matter TPC. Negative ion drift gases are favoured for directionality due to their low diffusion characteristics. The multiple internal mesh structure is designed to provide a high gain amplification stage when coupled to future large area Micromegas, strip or pixel charge readout planes. Experimental results and simulations are presented of MM-ThGEM gain and functionality using low pressure pure CF4, SF6 and SF6:CF4 mixtures irradiated with alpha particles and 55Fe x-rays. The concept is found to work well, providing stable operation with gains over 103 in pure SF6
Molecular sieve vacuum swing adsorption purification and radon reduction system for gaseous dark matter and rare-event detectors
In the field of directional dark matter experiments SF6 has emerged as an ideal target gas. A critical challenge with this gas, and with other proposed gases, is the effective removal of contaminant gases. This includes radon which produce unwanted background events, but also common pollutants such as water, oxygen and nitrogen, which can capture ionisation electrons, resulting in loss of detector gas gain over time. We present here a novel molecular sieve (MS) based gas recycling system for the simultaneous removal of both radon and common pollutants from SF6. The apparatus has the additional benefit of minimising gas required in experiments and utilises a Vacuum Swing Adsorption (VSA) technique for continuous, long-term operation. The gas system's capabilities were tested with a 100 L low-pressure SF6 Time Projection Chamber (TPC) detector. For the first time, we present a newly developed low-radioactive MS type 5 Å. This material was found to emanate radon at 98% less per radon captured compared to commercial counterparts, the lowest known MS emanation at the time of writing. Consequently, the radon activity in the TPC detector was reduced, with an upper limit of less than 7.2 mBq at a 95% confidence level (C.L.). Incorporation of MS types 3 Å and 4 Å to absorb common pollutants was found successfully to mitigate against gain deterioration while recycling the target gas
A Conformally Invariant Holographic Two-Point Function on the Berger Sphere
We apply our previous work on Green's functions for the four-dimensional
quaternionic Taub-NUT manifold to obtain a scalar two-point function on the
homogeneously squashed three-sphere (otherwise known as the Berger sphere),
which lies at its conformal infinity. Using basic notions from conformal
geometry and the theory of boundary value problems, in particular the
Dirichlet-to-Robin operator, we establish that our two-point correlation
function is conformally invariant and corresponds to a boundary operator of
conformal dimension one. It is plausible that the methods we use could have
more general applications in an AdS/CFT context.Comment: 1+49 pages, no figures. v2: Several typos correcte
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
Pattern of Kirtland's warbler occurrence in relation to the landscape structure of its summer habitat in northern Lower Michigan
Studies of the endangered Kirtland's warbler in relation to landscape ecosystems were conducted from 1986–1988 on a large wildfire-burn surrounding Mack Lake in southeastern Oscoda County, Michigan. A landscape ecosystem approach was used to distinguish low- and high-elevation segments of the landscape, as well as 11 local ecosystem types. The ecosystems were distinguished by physiography, microclimate, soil, and vegetation. The early occurrence of the warblers was strongly related to landscape structure, i.e. , to the broad low- and high-elevation areas and the local ecosystem types within them. Territories of male warblers were observed in 5 of the 11 ecosystems. The five ecosystem types where warblers were observed were characterized by (1) a physiography of level or rolling terrain; (2) soil series of Grayling, Graycalm, Montcalm, or Rubicon; (3) uplands with relatively warm temperature during the breeding season; (4) vegetation dominated by low sweet blueberry, bearberry, wintergreen, northern pin oak, blue stem grasses, and hair cap moss; and (5) canopy of relatively tall, dense, and patchy jack pine and oak. Landscape structure appears to be an important factor affecting the occurrence of the warbler in its summer habitat in northern Lower Michigan.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43161/1/10980_2004_Article_BF00129700.pd
Charge amplification in low pressure CF4:SF6:He mixtures with a multi-mesh ThGEM for directional dark matter searches
The CYGNO collaboration is developing next generation directional Dark Matter (DM) detection experiments, using gaseous Time Projection Chambers (TPCs), as a robust method for identifying Weakly Interacting Massive Particles (WIMPs) below the Neutrino Fog. SF6 is potentially ideal for this since it provides a high fluorine content, enhancing sensitivity to spin-dependent interactions and, as a Negative Ion Drift (NID) gas, reduces charge diffusion leading to improved positional resolution. CF4, although not a NID gas, has also been identified as a favourable gas target as it provides a scintillation signal which can be used for a complimentary light/charge readout approach. These gases can operate at low pressures to elongate Nuclear Recoil (NR) tracks and facilitate directional measurements. In principle, He could be added to low pressure SF6/CF4 without significant detriment to the length of 16S, 12C, and 19F recoils. This would improve the target mass, sensitivity to lower WIMP masses, and offer the possibility of atmospheric operation; potentially reducing the cost of a containment vessel. In this article, we present gas gain and energy resolution measurements, taken with a Multi-Mesh Thick Gaseous Electron Multiplier (MMThGEM), in low pressure SF6 and CF4:SF6 mixtures following the addition of He. We find that the CF4:SF6:He mixtures tested were able to produce gas gains on the order of 104 up to a total pressure of 100 Torr. These results demonstrate an order of magnitude improvement [1] in charge amplification in NID gas mixtures with a He component
- …