205 research outputs found

    Spin Waves in Disordered III-V Diluted Magnetic Semiconductors

    Full text link
    We propose a new scheme for numerically computing collective-mode spectra for large-size systems, using a reformulation of the Random Phase Approximation. In this study, we apply this method to investigate the spectrum and nature of the spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.Comment: 14 pages, including 11 figure

    Two-component approach for thermodynamic properties in diluted magnetic semiconductors

    Full text link
    We examine the feasibility of a simple description of Mn ions in III-V diluted magnetic semiconductors (DMSs) in terms of two species (components), motivated by the expectation that the Mn-hole exchange couplings are widely distributed, expecially for low Mn concentrations. We find, using distributions indicated by recent numerical mean field studies, that the thermodynamic properties (magnetization, susceptibility, and specific heat) cannot be fit by a single coupling as in a homogeneous model, but can be fit well by a two-component model with a temperature dependent number of ``strongly'' and ``weakly'' coupled spins. This suggests that a two-component description may be a minimal model for the interpretation of experimental measurements of thermodynamic quantities in III-V DMS systems.Comment: 10 pages, 9 figures, 1 new figure, substantial revision

    Spin relaxation and antisymmetric exchange in n-doped III-V semiconductor

    Full text link
    Recently K. Kavokin [Phys. Rev. B 64, 075305 (2001)] suggested that the Dzyaloshinskii-Moriya interaction between localized electrons governs slow spin relaxation in nn-doped GaAs in the regime close to the metal-insulator transition. We derive the correct spin Hamiltonian and apply it to the determination of spin dephasing time using the method of moments expansion. We argue that the proposed mechanism is insufficient to explain the observed values of the spin relaxation time.Comment: 5 pages, 1 figure

    Monte Carlo simulations of an impurity band model for III-V diluted magnetic semiconductors

    Full text link
    We report the results of a Monte Carlo study of a model of (III,Mn)V diluted magnetic semiconductors which uses an impurity band description of carriers coupled to localized Mn spins and is applicable for carrier densities below and around the metal-insulator transition. In agreement with mean field studies, we find a transition to a ferromagnetic phase at low temperatures. We compare our results for the magnetic properties with the mean field approximation, as well as with experiments, and find favorable qualitative agreement with the latter. The local Mn magnetization below the Curie temperature is found to be spatially inhomogeneous, and strongly correlated with the local carrier charge density at the Mn sites. The model contains fermions and classical spins and hence we introduce a perturbative Monte Carlo scheme to increase the speed of our simulations.Comment: 17 pages, 24 figures, 2 table

    Monte Carlo simulations of the four-dimensional XY spin glass at low temperatures

    Full text link
    We report results for simulations of the four-dimensional XY spin glass using the parallel tempering Monte Carlo method at low temperatures for moderate sizes. Our results are qualitatively consistent with earlier work on the three-dimensional gauge glass as well as three- and four-dimensional Edwards-Anderson Ising spin glass. An extrapolation of our results would indicate that large-scale excitations cost only a finite amount of energy in the thermodynamic limit. The surface of these excitations may be fractal, although we cannot rule out a scenario compatible with replica symmetry breaking in which the surface of low-energy large-scale excitations is space filling.Comment: 6 pages, 8 figure

    Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet

    Full text link
    We examine the spin-SS quantum Heisenberg magnet with Gaussian-random, infinite-range exchange interactions. The quantum-disordered phase is accessed by generalizing to SU(M)SU(M) symmetry and studying the large MM limit. For large SS the ground state is a spin-glass, while quantum fluctuations produce a spin-fluid state for small SS. The spin-fluid phase is found to be generically gapless - the average, zero temperature, local dynamic spin-susceptibility obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn} (\omega) at low frequencies. This form is identical to the phenomenological `marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from [email protected]

    Critical exponents in Ising spin glasses

    Full text link
    We determine accurate values of ordering temperatures and critical exponents for Ising Spin Glass transitions in dimension 4, using a combination of finite size scaling and non-equilibrium scaling techniques. We find that the exponents η\eta and zz vary with the form of the interaction distribution, indicating non-universality at Ising spin glass transitions. These results confirm conclusions drawn from numerical data for dimension 3.Comment: 6 pages, RevTeX (or Latex, etc), 10 figures, Submitted to PR

    Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems

    Full text link
    Motivated by the recent suggestion of anisotropic effective exchange interactions between Mn spins in Ga1x_{1-x}Mnx_xAs (arising as a result of spin-orbit coupling), we study their effects in diluted Heisenberg spin systems. We perform Monte Carlo simulations on several phenomenological model spin Hamiltonians, and investigate the extent to which frustration induced by anisotropic exchanges can reduce the low temperature magnetization in these models and the interplay of this effect with disorder in the exchange. In a model with low coordination number and purely ferromagnetic (FM) exchanges, we find that the low temperature magnetization is gradually reduced as exchange anisotropy is turned on. However, as the connectivity of the model is increased, the effect of small-to-moderate anisotropy is suppressed, and the magnetization regains its maximum saturation value at low temperatures unless the distribution of exchanges is very wide. To obtain significant suppression of the low temperature magnetization in a model with high connectivity, as is found for long-range interactions, we find it necessary to have both ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY interaction). This implies that disorder in the sign of the exchange interaction is much more effective in suppressing magnetization at low temperatures than exchange anisotropy.Comment: 9 pages, 8 figure

    One Dimensional Chain with Long Range Hopping

    Full text link
    The one-dimensional (1D) tight binding model with random nearest neighbor hopping is known to have a singularity of the density of states and of the localization length at the band center. We study numerically the effects of random long range (power-law) hopping with an ensemble averaged magnitude \expectation{|t_{ij}|} \propto |i-j|^{-\sigma} in the 1D chain, while maintaining the particle-hole symmetry present in the nearest neighbor model. We find, in agreement with results of position space renormalization group techniques applied to the random XY spin chain with power-law interactions, that there is a change of behavior when the power-law exponent σ\sigma becomes smaller than 2

    Nature of the Spin-glass State in the Three-dimensional Gauge Glass

    Full text link
    We present results from simulations of the gauge glass model in three dimensions using the parallel tempering Monte Carlo technique. Critical fluctuations should not affect the data since we equilibrate down to low temperatures, for moderate sizes. Our results are qualitatively consistent with earlier work on the three and four dimensional Edwards-Anderson Ising spin glass. We find that large scale excitations cost only a finite amount of energy in the thermodynamic limit, and that those excitations have a surface whose fractal dimension is less than the space dimension, consistent with a scenario proposed by Krzakala and Martin, and Palassini and Young.Comment: 5 pages, 7 figure
    corecore