1,887 research outputs found

    The causal differential scattering approach to calculating the effective properties of random composite materials with a particle size distribution

    Get PDF
    An implementation of the Causal Differential Method (CDM) for modelling the effective properties of a random two-phase composite material is presented. Such materials are commonly used as ultrasonic transducer matching layersor backing layers. The method is extended to incorporate a particle size distribution in the inclusion phase. Numerical issues regarding the implementation and convergence of the method are discussed. It is found that, for a given frequency of excitation, the calculated velocity for the composite has a distribution whose variance increases as the volume fraction of inclusions increases. The model predictions would suggest that to reliably and repeatedly manufacture these composites, with a desired mechanical impedance, a low volume fraction of inclusions should be used

    A Glimpse Inside: Considering the Impact of Curriculum Outcomes and Personal Ideology on Social Studies Pedagogy: A Study Summary

    Get PDF
    This article summarizes the research findings of a Master of Education thesis that aimed to find meaningful answers to the following central question: To what extent, if any, are there pedagogical differences between Social Studies educators who self-identify as ‘liberal’ or ‘conservative’? This study explored how those who self-identify as being on the left (liberal) of the so-called political spectrum would deliver specific social studies curriculum and conversely, how those who identify as being on the political right (conservative) would deliver course content. Ultimately, these questions will serve to present a clear understanding of the extent of political liberties taken by public school social studies teachers, their implications and potential impact on student learning and political understandings

    Structure and dynamics of the interface between a binary hard-sphere crystal of NaCl type and its coexisting binary fluid

    Get PDF
    Molecular dynamics simulations are performed to study the [100] and [111] orientations of the crystal-melt interface between an ordered two-component hard sphere with a NaCl structure and its coexisting binary hard-sphere fluid. The diameter ratio of the two types of hard spheres making up the mixture is taken to be 0.414. This work complements our earlier interface simulations [J. Chem. Phys.116, 3410] for the same diameter ratio at lower pressures where the smaller component is immiscible in the solid and the fluid mixture coexists with a pure FCC crystal of large particles. Density profiles and diffusion coefficient profiles are presented for the AB interfacial system. We find that for this system, the transition from crystal-like to fluid-like behavior of both the density and diffusion constant profiles occurs over a narrower region than that seen in our previous studies [J. Chem. Phys. 116, 3410] of the FCC/binary fluid system. But similar to what was found in the FCC/binary fluid interface the transition region for the large particle diffusion constant is shifted about the size of the large particles toward the fluid phase relative to that for the small particles.Comment: 8 page

    Formalized Verification of Snapshotable Trees: Separation and Sharing

    Get PDF
    Abstract. We use separation logic to specify and verify a Java program that implements snapshotable search trees, fully formalizing the specification and verification in the Coq proof assistant. We achieve local and modular reasoning about a tree and its snapshots and their iterators, although the implementation involves shared mutable heap data structures with no separation or ownership relation between the various data. The paper also introduces a series of four increasingly sophisticated implementations and verifies the first one. The others are included as future work and as a set of challenge problems for full functional specification and verification, whether by separation logic or by other formalisms.

    Enhancing Communication about Paediatric Medicines: Lessons from a Qualitative Study of Parents' Experiences of Their Child's Suspected Adverse Drug Reaction

    Get PDF
    Background: There is little research on parents’ experiences of suspected adverse drug reactions in their children and hence little evidence to guide clinicians when communicating with families about problems associated with medicines. Objective: To identify any unmet information and communication needs described by parents whose child had a suspected adverse drug reaction. Methods: Semi-structured qualitative interviews with parents of 44 children who had a suspected adverse drug reaction identified on hospital admission, during in-patient treatment or reported by parents using the Yellow Card Scheme (the UK system for collecting spontaneous reports of adverse drug reactions). Interviews were conducted face-to-face or by telephone; most interviews were audiorecorded and transcribed. Analysis was informed by the principles of the constant comparative method. Results: Many parents described being dissatisfied with how clinicians communicated about adverse drug reactions and unclear about the implications for their child’s future use of medicines. A few parents felt that clinicians had abandoned their child and reported refusing the use of further medicines because they feared a repeated adverse drug reaction. The accounts of parents of children with cancer were different. They emphasised their confidence in clinicians’ management of adverse drug reactions and described how clinicians prospectively explained the risks associated with medicines. Parents linked symptoms to medicines in ways that resembled the established reasoning that clinicians use to evaluate the possibility that a medicine has caused an adverse drug reaction. Conclusion: Clinicians’ communication about adverse drug reactions was poor from the perspective of parents, indicating that improvements are needed. The accounts of parents of children with cancer indicate that prospective explanation about adverse drug reactions at the time of prescription can be effective. Convergence between parents and clinicians in their reasoning for linking children’s symptoms to medicines could be a starting point for improved communication

    The regulation of peripheral metabolism by gut-derived hormones

    Get PDF
    Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.Emily W.L. Sun, Alyce M. Martin, Richard L. Young and Damien J. Keatin

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure
    • …
    corecore