24 research outputs found
Macdonald Polynomials from Sklyanin Algebras: A Conceptual Basis for the -Adics-Quantum Group Connection
We establish a previously conjectured connection between -adics and
quantum groups. We find in Sklyanin's two parameter elliptic quantum algebra
and its generalizations, the conceptual basis for the Macdonald polynomials,
which ``interpolate'' between the zonal spherical functions of related real and
\--adic symmetric spaces. The elliptic quantum algebras underlie the
\--Baxter models. We show that in the n \air \infty limit, the Jost
function for the scattering of {\em first} level excitations in the
\--Baxter model coincides with the Harish\--Chandra\--like \--function
constructed from the Macdonald polynomials associated to the root system .
The partition function of the \--Baxter model itself is also expressed in
terms of this Macdonald\--Harish\--Chandra\ \--function, albeit in a less
simple way. We relate the two parameters and of the Macdonald
polynomials to the anisotropy and modular parameters of the Baxter model. In
particular the \--adic ``regimes'' in the Macdonald polynomials correspond
to a discrete sequence of XXZ models. We also discuss the possibility of
``\--deforming'' Euler products.Comment: 25 page
Thermostatistics of deformed bosons and fermions
Based on the q-deformed oscillator algebra, we study the behavior of the mean
occupation number and its analogies with intermediate statistics and we obtain
an expression in terms of an infinite continued fraction, thus clarifying
successive approximations. In this framework, we study the thermostatistics of
q-deformed bosons and fermions and show that thermodynamics can be built on the
formalism of q-calculus. The entire structure of thermodynamics is preserved if
ordinary derivatives are replaced by the use of an appropriate Jackson
derivative and q-integral. Moreover, we derive the most important thermodynamic
functions and we study the q-boson and q-fermion ideal gas in the thermodynamic
limit.Comment: 14 pages, 2 figure