10 research outputs found

    Low-temperature spin relaxation in n-type GaAs

    Full text link
    Low-temperature electron spin relaxation is studied by the optical orientation method in bulk n-GaAs with donor concentrations from 10^14 cm^{-3} to 5x10^17 cm^{-3}. A peculiarity related to the metal-to-insulator transition (MIT) is observed in the dependence of the spin lifetime on doping near n_D = 2x10^16 cm^{-3}. In the metallic phase, spin relaxation is governed by the Dyakonov-Perel mechanism, while in the insulator phase it is due to anisotropic exchange interaction and hyperfine interactio

    Anisotropic exchange interaction of localized conduction-band electrons in semiconductor structures

    Full text link
    The spin-orbit interaction in semiconductors is shown to result in an anisotropic contribution into the exchange Hamiltonian of a pair of localized conduction-band electrons. The anisotropic exchange interaction exists in semiconductor structures which are not symmetric with respect to spatial inversion, for instance in bulk zinc-blend semiconductors. The interaction has both symmetric and antisymmetric parts with respect to permutation of spin components. The antisymmetric (Dzyaloshinskii-Moriya) interaction is the strongest one. It contributes significantly into spin relaxation of localized electrons; in particular, it governs low-temperature spin relaxation in n-GaAs with the donor concentration near 10^16cm-3. The interaction must be allowed for in designing spintronic devices, especially spin-based quantum computers, where it may be a major source of decoherence and errors

    Encoded Universality for Generalized Anisotropic Exchange Hamiltonians

    Get PDF
    We derive an encoded universality representation for a generalized anisotropic exchange Hamiltonian that contains cross-product terms in addition to the usual two-particle exchange terms. The recently developed algebraic approach is used to show that the minimal universality-generating encodings of one logical qubit are based on three physical qubits. We show how to generate both single- and two-qubit operations on the logical qubits, using suitably timed conjugating operations derived from analysis of the commutator algebra. The timing of the operations is seen to be crucial in allowing simplification of the gate sequences for the generalized Hamiltonian to forms similar to that derived previously for the symmetric (XY) anisotropic exchange Hamiltonian. The total number of operations needed for a controlled-Z gate up to local transformations is five. A scalable architecture is proposed.Comment: 11 pages, 4 figure

    Spin relaxation and antisymmetric exchange in n-doped III-V semiconductor

    Full text link
    Recently K. Kavokin [Phys. Rev. B 64, 075305 (2001)] suggested that the Dzyaloshinskii-Moriya interaction between localized electrons governs slow spin relaxation in nn-doped GaAs in the regime close to the metal-insulator transition. We derive the correct spin Hamiltonian and apply it to the determination of spin dephasing time using the method of moments expansion. We argue that the proposed mechanism is insufficient to explain the observed values of the spin relaxation time.Comment: 5 pages, 1 figure

    Temperature dependence of polarization relaxation in semiconductor quantum dots

    Full text link
    The decay time of the linear polarization degree of the luminescence in strongly confined semiconductor quantum dots with asymmetrical shape is calculated in the frame of second-order quasielastic interaction between quantum dot charge carriers and LO phonons. The phonon bottleneck does not prevent significantly the relaxation processes and the calculated decay times can be of the order of a few tens picoseconds at temperature T100T \simeq 100K, consistent with recent experiments by Paillard et al. [Phys. Rev. Lett. {\bf86}, 1634 (2001)].Comment: 4 pages, 4 figure

    Electron spin relaxation by nuclei in semiconductor quantum dots

    Full text link
    We have studied theoretically the electron spin relaxation in semiconductor quantum dots via interaction with nuclear spins. The relaxation is shown to be determined by three processes: (i) -- the precession of the electron spin in the hyperfine field of the frozen fluctuation of the nuclear spins; (ii) -- the precession of the nuclear spins in the hyperfine field of the electron; and (iii) -- the precession of the nuclear spin in the dipole field of its nuclear neighbors. In external magnetic fields the relaxation of electron spins directed along the magnetic field is suppressed. Electron spins directed transverse to the magnetic field relax completely in a time on the order of the precession period of its spin in the field of the frozen fluctuation of the nuclear spins. Comparison with experiment shows that the hyperfine interaction with nuclei may be the dominant mechanism of electron spin relaxation in quantum dots

    Symmetry of anisotropic exchange interactions in semiconductor nanostructures

    Full text link
    The symmetry of exchange interaction of charge carriers in semiconductor nanostructures (quantum wells and quantum dots) is analysed. It is shown that the exchange Hamiltonian of two particles belonging to the same energy band can be universally expressed via pseudospin operators of the particles. The relative strength of the anisotropic exchange interaction is shown to be independent of the binding energy and the isotropic exchange constant

    Spin-polarized current amplification and spin injection in magnetic bipolar transistors

    Get PDF
    The magnetic bipolar transistor (MBT) is a bipolar junction transistor with an equilibrium and nonequilibrium spin (magnetization) in the emitter, base, or collector. The low-injection theory of spin-polarized transport through MBTs and of a more general case of an array of magnetic {\it p-n} junctions is developed and illustrated on several important cases. Two main physical phenomena are discussed: electrical spin injection and spin control of current amplification (magnetoamplification). It is shown that a source spin can be injected from the emitter to the collector. If the base of an MBT has an equilibrium magnetization, the spin can be injected from the base to the collector by intrinsic spin injection. The resulting spin accumulation in the collector is proportional to exp(qVbe/kBT)\exp(qV_{be}/k_BT), where qq is the proton charge, VbeV_{be} is the bias in the emitter-base junction, and kBTk_B T is the thermal energy. To control the electrical current through MBTs both the equilibrium and the nonequilibrium spin can be employed. The equilibrium spin controls the magnitude of the equilibrium electron and hole densities, thereby controlling the currents. Increasing the equilibrium spin polarization of the base (emitter) increases (decreases) the current amplification. If there is a nonequilibrium spin in the emitter, and the base or the emitter has an equilibrium spin, a spin-valve effect can lead to a giant magnetoamplification effect, where the current amplifications for the parallel and antiparallel orientations of the the equilibrium and nonequilibrium spins differ significantly. The theory is elucidated using qualitative analyses and is illustrated on an MBT example with generic materials parameters.Comment: 14 PRB-style pages, 10 figure
    corecore