53 research outputs found

    Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres

    Full text link
    There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures interacting through hard particle potentials. One such phase consists of alternating two dimensional liquid-like layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using computer simulations and compare results to experiments and theory. We conclude that (1) there is stable entropy driven microphase separation in mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod length decreases the total volume fraction needed for the formation of a layered phase, therefore small spheres effectively stabilize the layered phase; the opposite is true for large spheres and (3) the degree of this stabilization increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website http://www.elsie.brandeis.ed

    Galaxy bulges and their massive black holes: a review

    Full text link
    With references to both key and oft-forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centres of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.Comment: Invited (15 Feb. 2014) review article (submitted 16 Nov. 2014). 590 references, 9 figures, 25 pages in emulateApJ format. To appear in "Galactic Bulges", E. Laurikainen, R.F. Peletier, and D.A. Gadotti (eds.), Springer Publishin

    Body size and digestive system shape resource selection by ungulates : a cross-taxa test of the forage maturation hypothesis

    Get PDF
    The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.DATA AVAILABILITY STATEMENT : The dataset used in our analyses is available via Dryad repository (https://doi.org/10.5061/dryad.jsxksn09f) following a year-long embargo from publication of the manuscript. The coordinates associated with mountain zebra data are not provided in an effort to protect critically endangered black rhino (Diceros bicornis) locations. Interested researchers can contact the data owner (Minnesota Zoo) directly for inquiries.https://wileyonlinelibrary.com/journal/elehj2022Mammal Research InstituteZoology and Entomolog

    Haemoglobinopathies in India: estimates of blood requirements and treatment costs for the decade 2017–2026

    No full text
    The Government of India is presently engaged in the implementation of a prevention and control programme for two major forms of haemoglobinopathies, thalassaemia major and sickle cell disease, with guidelines for their prevention and management formulated under the National Health Mission. Based on projections for the population up to the year 2026, the annual blood requirement for treatment will increase to 9.24 million units, together with an 86% increase in budgetary requirements which then would account for over 19% of the current National Health Budget. To avert a public health crisis there is an urgent need to fully implement the prevention programme for haemoglobinopathies
    • …
    corecore