56 research outputs found
Irreversibility and the arrow of time in a quenched quantum system
Irreversibility is one of the most intriguing concepts in physics. While
microscopic physical laws are perfectly reversible, macroscopic average
behavior has a preferred direction of time. According to the second law of
thermodynamics, this arrow of time is associated with a positive mean entropy
production. Using a nuclear magnetic resonance setup, we measure the
nonequilibrium entropy produced in an isolated spin-1/2 system following fast
quenches of an external magnetic field and experimentally demonstrate that it
is equal to the entropic distance, expressed by the Kullback-Leibler
divergence, between a microscopic process and its time-reverse. Our result
addresses the concept of irreversibility from a microscopic quantum standpoint.Comment: 8 pages, 7 figures, RevTeX4-1; Accepted for publication Phys. Rev.
Let
Experimental determination of the non-extensive entropic parameter
We show how to extract the parameter from experimental data, considering
an inhomogeneous magnetic system composed by many Maxwell-Boltzmann homogeneous
parts, which after integration over the whole system recover the Tsallis
non-extensivity. Analyzing the cluster distribution of
LaSrMnO manganite, obtained through scanning tunnelling
spectroscopy, we measure the parameter and predict the bulk magnetization
with good accuracy. The connection between the Griffiths phase and
non-extensivity is also considered. We conclude that the entropic parameter
embodies information about the dynamics, the key role to describe complex
systems.Comment: Submitted to Phys. Rev. Let
Experimental Determination of Thermal Entanglement in Spin Clusters using Magnetic Susceptibility Measurements
The present work reports an experimental observation of thermal entanglement
in a clusterized spin chain formed in the compound NaCuSiO.
The presence of entanglement was investigated through two measured quantities,
an Entanglement Witness and the Entanglement of Formation, both derived from
the magnetic susceptibility. It was found that pairwise entanglement exists
below K. Tripartite entanglement was also observed below K. A theoretical study of entanglement evolution as a function of applied
field and temperature is also presented.Comment: Submited to Phys. Rev.
Physical meaning and measurement of the entropic parameter in an inhomogeneous magnetic systems
In this paper we present a thorough analysis of two systems magnetically
inhomogeneous: the manganite LaSrMnO/MgO and the amorphous
alloy CuCo. In both cases, the non-extensive statistics yield a
faithful description of the magnetic behavior of the systems. In the model
proposed here, the inhomogeneous magnetic system is composed by many
Maxwell-Boltzmann homogeneous bits and the entropic parameter is related to
the moments of the distribution of the inhomogeneous quantity. From the
analysis of Scanning Tunnelling Spectroscopy (STS) images, the parameter
can be directly measured
- …