10,425 research outputs found

    Proposing "b-Parity" - a New Approximate Quantum Number in Inclusive b-jet Production - as an Efficient Probe of New Flavor Physics

    Full text link
    We consider the inclusive reaction \ell^+ \ell^- -> nb +X (n = number of b-jets) in lepton colliders for which we propose a useful approximately conserved quantum number b_P=(-1)^n that we call b-Parity (b_P). We make the observation that the Standard Model (SM) is essentially b_P-even since SM b_P-violating signals are necessarily CKM suppressed. In contrast new flavor physics can produce b_P=-1 signals whose only significant SM background is due to b-jet misidentification. Thus, we show that b-jet counting, which relies primarily on b-tagging, becomes a very simple and sensitive probe of new flavor physics (i.e., of b_P-violation).Comment: 5 pages using revtex, 2 figures embadded in the text using epsfig. As will appear in Phys.Rev.Lett.. Considerable improvement was made in the background calculation as compared to version 1, by including purity parameters, QCD effects and 4-jets processe

    Atom Chips: Fabrication and Thermal Properties

    Full text link
    Neutral atoms can be trapped and manipulated with surface mounted microscopic current carrying and charged structures. We present a lithographic fabrication process for such atom chips based on evaporated metal films. The size limit of this process is below 1μ\mum. At room temperature, thin wires can carry more than 107^7A/cm2^2 current density and voltages of more than 500V. Extensive test measurements for different substrates and metal thicknesses (up to 5 μ\mum) are compared to models for the heating characteristics of the microscopic wires. Among the materials tested, we find that Si is the best suited substrate for atom chips

    Monolithic integration of a very low threshold GaInAsP laser and metal-insulator-semiconductor field-effect transistor on semi-insulating InP

    Get PDF
    Monolithic integration of 1.3-µm groove lasers and metal-insulator-semiconductor field-effect transistors (MISFET) is achieved by a simple single liquid phase epitaxy (LPE) growth process. Laser thresholds as low as 14 mA for 300-µm cavity length are obtained. MIS depletion mode FET's with n channels on LPE grown InP layer show typical transconductance of 5–10 mmho. Laser modulation by the FET current is demonstrated at up to twice the threshold current

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    Tight Bounds for MIS in Multichannel Radio Networks

    Full text link
    Daum et al. [PODC'13] presented an algorithm that computes a maximal independent set (MIS) within O(log2n/F+lognpolyloglogn)O(\log^2 n/F+\log n \mathrm{polyloglog} n) rounds in an nn-node multichannel radio network with FF communication channels. The paper uses a multichannel variant of the standard graph-based radio network model without collision detection and it assumes that the network graph is a polynomially bounded independence graph (BIG), a natural combinatorial generalization of well-known geographic families. The upper bound of that paper is known to be optimal up to a polyloglog factor. In this paper, we adapt algorithm and analysis to improve the result in two ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus obtain an asymptotically optimal multichannel radio network MIS algorithm. In addition, our new analysis allows to generalize the class of graphs from those with polynomially bounded local independence to graphs where the local independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201

    Damping of bulk excitations over an elongated BEC - the role of radial modes

    Full text link
    We report the measurement of Beliaev damping of bulk excitations in cigar shaped Bose Einstein condensates of atomic vapor. By using post selection, excitation line shapes of the total population are compared with those of the undamped excitations. We find that the damping depends on the initial excitation energy of the decaying quasi particle, as well as on the excitation momentum. We model the condensate as an infinite cylinder and calculate the damping rates of the different radial modes. The derived damping rates are in good agreement with the experimentally measured ones. The damping rates strongly depend on the destructive interference between pathways for damping, due to the quantum many-body nature of both excitation and damping products.Comment: 5 pages, 4 figure

    An atom fiber for guiding cold neutral atoms

    Full text link
    We present an omnidirectional matter wave guide on an atom chip. The rotational symmetry of the guide is maintained by a combination of two current carrying wires and a bias field pointing perpendicular to the chip surface. We demonstrate guiding of thermal atoms around more than two complete turns along a spiral shaped 25mm long curved path (curve radii down to 200μ\mum) at various atom--surface distances (35-450μ\mum). An extension of the scheme for the guiding of Bose-Einstein condensates is outlined

    Emergence of hyperons in failed supernovae: trigger of the black hole formation

    Full text link
    We investigate the emergence of strange baryons in the dynamical collapse of a non-rotating massive star to a black hole by the neutrino-radiation hydrodynamical simulations in general relativity. By following the dynamical formation and collapse of nascent proto-neutron star from the gravitational collapse of a 40Msun star adopting a new hyperonic EOS table, we show that the hyperons do not appear at the core bounce but populate quickly at ~0.5-0.7 s after the bounce to trigger the re-collapse to a black hole. They start to show up off center owing to high temperatures and later prevail at center when the central density becomes high enough. The neutrino emission from the accreting proto-neutron star with the hyperonic EOS stops much earlier than the corresponding case with a nucleonic EOS while the average energies and luminosities are quite similar between them. These features of neutrino signal are a potential probe of the emergence of new degrees of freedom inside the black hole forming collapse.Comment: 11 pages, 3 figures, accepted for publication in ApJ

    Mixed Meson Masses with Domain-Wall Valence and Staggered Sea Fermions

    Full text link
    Mixed action lattice calculations allow for an additive lattice spacing dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low energy dynamics of all hadronic correlation functions. We determine the leading order, O(a2)\mathcal{O}(a^2), and next to leading order, O(a2mπ2)\mathcal{O}(a^2 m_\pi^2), additive mass shift of \textit{valence-sea} mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that on the asqtad improved coarse MILC lattices, this additive mass shift is well parameterized in lattice units by Δ(am)2=0.034(2)0.06(2)(amπ)2\Delta(am)^2 = 0.034(2) -0.06(2) (a m_\pi)^2, which in physical units, using a=0.125a=0.125 fm, corresponds to Δ(m)2=(291±8MeV)20.06(2)mπ2\Delta(m)^2 = (291\pm 8 \textrm{MeV})^2 -0.06(2) m_\pi^2. In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a2ΔMix=(316±4MeV)2a^2 \Delta_\mathrm{Mix} = (316 \pm 4 \textrm{MeV})^2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one can not distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parameterization given above.Comment: 28 pages, 3 figures, 5 table
    corecore