19,138 research outputs found

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    Wigner's little group and BRST cohomology for one-form Abelian gauge theory

    Full text link
    We discuss the (dual-)gauge transformations for the gauge-fixed Lagrangian density and establish their intimate connection with the translation subgroup T(2) of the Wigner's little group for the free one-form Abelian gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Though the relationship between the usual gauge transformation for the Abelian massless gauge field and T(2) subgroup of the little group is quite well-known, such a connection between the dual-gauge transformation and the little group is a new observation. The above connections are further elaborated and demonstrated in the framework of Becchi-Rouet-Stora-Tyutin (BRST) cohomology defined in the quantum Hilbert space of states where the Hodge decomposition theorem (HDT) plays a very decisive role.Comment: LaTeX file, 17 pages, Journal-ref. give

    BRST cohomology and Hodge decomposition theorem in Abelian gauge theory

    Full text link
    We discuss the Becchi-Rouet-Stora-Tyutin (BRST) cohomology and Hodge decomposition theorem for the two dimensional free U(1) gauge theory. In addition to the usual BRST charge, we derive a local, conserved and nilpotent co(dual)-BRST charge under which the gauge-fixing term remains invariant. We express the Hodge decomposition theorem in terms of these charges and the Laplacian operator. We take a single photon state in the quantum Hilbert space and demonstrate the notion of gauge invariance, no-(anti)ghost theorem, transversality of photon and establish the topological nature of this theory by exploiting the concepts of BRST cohomology and Hodge decomposition theorem. In fact, the topological nature of this theory is encoded in the vanishing of the Laplacian operator when equations of motion are exploited. On the two dimensional compact manifold, we derive two sets of topological invariants with respect to the conserved and nilpotent BRST- and co-BRST charges and express the Lagrangian density of the theory as the sum of terms that are BRST- and co-BRST invariants. Mathematically, this theory captures together some of the key features of both Witten- and Schwarz type of topological field theories.Comment: 20 pages, LaTeX, no figures, Title and text have been changed, Journal reference is given, some references have been adde

    Superfield approach to symmetry invariance in QED with complex scalar fields

    Full text link
    We show that the Grassmannian independence of the super Lagrangian density, expressed in terms of the superfields defined on a (4, 2)-dimensional supermanifold, is a clear-cut proof for the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST invariance of the corresoponding four (3 + 1)-dimensional (4D) Lagrangian density that describes the interaction between the U(1) gauge field and the charged complex scalar fields. The above 4D field theoretical model is considered on a (4, 2)-dimensional supermanifold parametrized by the ordinary four spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). Geometrically, the (anti-)BRST invariance is encoded in the translation of the super Lagrangian density along the Grassmannian directions of the above supermanifold such that the outcome of this shift operation is zero.Comment: LaTeX file, 14 pages, minor changes in the title and text, version to appear in ``Pramana - Journal of Physics'

    Geometrical Aspects Of BRST Cohomology In Augmented Superfield Formalism

    Full text link
    In the framework of augmented superfield approach, we provide the geometrical origin and interpretation for the nilpotent (anti-)BRST charges, (anti-)co-BRST charges and a non-nilpotent bosonic charge. Together, these local and conserved charges turn out to be responsible for a clear and cogent definition of the Hodge decomposition theorem in the quantum Hilbert space of states. The above charges owe their origin to the de Rham cohomological operators of differential geometry which are found to be at the heart of some of the key concepts associated with the interacting gauge theories. For our present review, we choose the two (1+1)(1 + 1)-dimensional (2D) quantum electrodynamics (QED) as a prototype field theoretical model to derive all the nilpotent symmetries for all the fields present in this interacting gauge theory in the framework of augmented superfield formulation and show that this theory is a {\it unique} example of an interacting gauge theory which provides a tractable field theoretical model for the Hodge theory.Comment: LaTeX file, 25 pages, Ref. [49] updated, correct page numbers of the Journal are give

    Superfield approach to a novel symmetry for non-Abelian gauge theory

    Full text link
    In the framework of superfield formalism, we demonstrate the existence of a new local, covariant, continuous and nilpotent (dual-BRST) symmetry for the BRST invariant Lagrangian density of a self-interacting two (1+11 + 1)-dimensional (2D) non-Abelian gauge theory (having no interaction with matter fields). The local and nilpotent Noether conserved charges corresponding to the above continuous symmetries find their geometrical interpretation as the translation generators along the odd (Grassmannian) directions of the four (2+2)2 + 2)-dimensional supermanifold.Comment: LaTeX, 12 pages, equations (4.2)--(4.6) correcte

    Supersymmetric Oscillator: Novel Symmetries

    Full text link
    We discuss various continuous and discrete symmetries of the supersymmetric simple harmonic oscillator (SHO) in one (0 + 1)-dimension of spacetime and show their relevance in the context of mathematics of differential geometry. We show the existence of a novel set of discrete symmetries in the theory which has, hitherto, not been discussed in the literature on theoretical aspects of SHO. We also point out the physical relevance of our present investigation.Comment: REVTeX file, 5 pages, minor changes in title, text and abstract, references expanded, version to appear in EP

    QUANTIZATION OF A qq-DEFORMED FREE RELATIVISTIC PARTICLE

    Get PDF
    A qq-deformed free scalar relativistic particle is discussed in the framework of the BRST formalism. The qq-deformed local gauge symmetry and reparametrization invariance of the first-order Lagrangian have been exploited for the BRST quantization of this system on a GLq(2)GL_{q}(2) invariant quantum world-line. The on-shell equivalence of these BRST charges requires the deformation parameter to be ±1 \pm 1 under certain identifications.The same restriction (q=±1 q= \pm 1 ) emerges from the conservation of the qq-deformed BRST charge on an arbitrary (unconstrained) manifold and the validity of the BRST algebra. The solutions for the equations of motion respect GLq(2)GL_{q}(2) invariance on the mass-shell at any arbitrary value of the evolution parameter characterizing the quantum world-line.Comment: LATEX, 12 page
    corecore