144 research outputs found

    Excitons of Composite Fermions

    Full text link
    The low-energy excitations of filled Landau levels (LL's) of electrons involve promotion of a single electron from the topmost filled LL to the lowest empty LL. These are called excitons or collective modes. The incompressible fractional quantum Hall states are understood as filled LL's of composite fermions, and the low-energy neutral excitations are excitons of composite fermions. New techniques are developed to study large systems, which provide detailed information about the dispersions of the composite fermion excitons. In particular, it is found that the interaction energy of the exciton is well described by the `unprojected' composite fermion theory.Comment: 40 pages including 13 postscript figures; accepted for publication in Physical Review B (1996); related paper in cond-mat/951113

    Observation of soft magnetorotons in bilayer quantum Hall ferromagnets

    Full text link
    Inelastic light scattering measurements of low-lying collective excitations of electron double layers in the quantum Hall state at total filling nu_T=1 reveal a deep magnetoroton in the dispersion of charge-density excitations across the tunneling gap. The roton softens and sharpens markedly when the phase boundary for transitions to highly correlated compressible states is approached. The findings are interpreted with Hartree-Fock evaluations that link soft magnetorotons to enhanced excitonic Coulomb interactions and to quantum phase transitions in the ferromagnetic bilayers.Comment: ReVTeX4, 4 pages, 4 EPS figure

    Interaction dependence of composite fermion effective masses

    Full text link
    We estimate the composite fermion effective mass for a general two particle potential r^{-\alpha} using exact diagonalization for polarized electrons in the lowest Landau level on a sphere. Our data for the ground state energy at filling fraction \nu=1/2 as well as estimates of the excitation gap at \nu=1/3, 2/5 and 3/7 show that m_eff \sim \alpha^{-1}.Comment: 4 pages, RevTeX, 5 figure

    Fermi-sea-like correlations in a partially filled Landau level

    Full text link
    The pair distribution function and the static structure factor are computed for composite fermions. Clear and robust evidence for a 2kF2k_F structure is seen in a range of filling factors in the vicinity of the half-filled Landau level. Surprisingly, it is found that filled Landau levels of composite fermions, i.e. incompressible FQHE states, bear a stronger resemblance to a Fermi sea than do filled Landau levels of electrons.Comment: 23 pages, revte

    Ground State Wavefunctions of General Filling Factors in the Lowest Landau Level

    Full text link
    We present a set of explicit trial wavefunctions for the filling factors \nu=n/(2n\pm 1) and \nu=1/2 in the symmetric gauge. We show that the zeroes of the wavefunction, except those dictated by the Fermi statistics, are detached from the particles. The evolution of zeroes as the filling factor is varied is examined. We show that the wavefunction at half-filling exhibits a 2k_F-like oscillation in its occupation number profile. The center-of-mass motion of the ground state droplet is described in terms of the intra-Landau- level excitations of composite fermions.Comment: To be published in Phys. Rev. B Rapid Communication

    Unpolarized quasielectrons and the spin polarization at filling fractions between 1/3 and 2/5

    Full text link
    We prove that for a hard core interaction the ground state spin polarization in the low Zeeman energy limit is given by P=2/ν−5P=2/\nu-5 for filling fractions in the range 1/3≤ν≤2/5 1/3 \leq\nu\leq 2/5 . The same result holds for a Coulomb potential except for marginally small magnetic fields. At the magnetic fields B<20TB<20T unpolarized quasielectrons can manifest themselves by a characteristic peak in the I-V characteristics for tunneling between two ν=1/3\nu=1/3 ferromagnets.Comment: 8 pages, Latex. accepted for publication in Phys.Rev.

    Wave Function of the Largest Skyrmion on a Sphere

    Full text link
    It has been clarified that charged excitation known as a skyrmion exists around the ferromagnetic ground state at the Landau level filling factor ν=1/q\nu=1/q, where qq is an odd integer. An infinite sized skyrmion is realized in the absence of the spin-Zeeman splitting or for double-layered systems. Analytical form of the wave function is identified at ν=1\nu=1 and ν=1/3\nu=1/3 through exact diagonalization of the Hamiltonian for finite sized spherical systems. It is clarified that the skyrmion wave functions at ν=1\nu=1 and ν=1/3\nu=1/3 are qualitatively different: they are not related by the composite fermion transformation. Long-range behavior of the skyrmion wave function around ν=1\nu=1 is shown to be consistent with the semiclassical picture of the skyrmion.Comment: 4 pages. to be published in J. Phys. Soc. Jpn. Vol.67 No.10. Three references are adde

    Symmetry-breaking skyrmion states in fractional quantum Hall systems

    Full text link
    We calculate in an analyical fashion the energies and net spins of skyrmions in fractional quantum Hall systems, based on the suggestion that skyrmion states are spontaneously LZL_Z and SZS_Z symmetry-breaking states. The quasihole-skyrmion state with a charge −e/3-e/3 around ν\nu = 1/3, where the ground state is known as a spin-polarized ferromagnetic state, is found to exist even in high magnetic fields up to about 7 T for GaAs samples.Comment: There is conceptual change. To appear in Phys. Rev.

    Optically Pumped NMR Measurements of the Electron Spin Polarization in GaAs Quantum Wells near Landau Level Filling Factor nu=1/3

    Full text link
    The Knight shift of Ga-71 nuclei is measured in two different electron-doped multiple quantum well samples using optically pumped NMR. These data are the first direct measurements of the electron spin polarization, P(nu,T)=/max, near nu=1/3. The P(T) data at nu=1/3 probe the neutral spin-flip excitations of a fractional quantum Hall ferromagnet. In addition, the saturated P(nu) drops on either side of nu=1/3, even in a Btot=12 Tesla field. The observed depolarization is quite small, consistent with an average of about 0.1 spin-flips per quasihole (or quasiparticle), a value which does not appear to be explicable by the current theoretical understanding of the FQHE near nu=1/3.Comment: 4 pages (REVTEX), 5 eps figures embedded in text; minor changes, published versio
    • …
    corecore