4,530 research outputs found

    Transmission-Line Analysis of Epsilon-Near-Zero (ENZ)-Filled Narrow Channels

    Get PDF
    Following our recent interest in metamaterial-based devices supporting resonant tunneling, energy squeezing and supercoupling through narrow waveguide channels and bends, here we analyze the fundamental physical mechanisms behind this phenomenon using a transmission-line model. These theoretical findings extend our theory, allowing us to take fully into account frequency dispersion and losses and revealing the substantial differences between this unique tunneling phenomenon and higher-frequency Fabry-Perot resonances. Moreover, they represent the foundations for other possibilities to realize tunneling through arbitrary waveguide bends, both in E and H planes of polarization, waveguide connections and sharp abruptions and to obtain analogous effects with geometries arguably simpler to realize.Comment: 35 pages, 9 figure

    Low sidelobe level low-cost earth station antennas for the 12 GHz broadcasting satellite service

    Get PDF
    An experimental investigation of the performance of 1.22 m and 1.83 m diameter paraboloid antennas with an f/D ratio of 0.38 and using a feed developed by Kumar is reported. It is found that sidelobes below 30 dB can be obtained only if the paraboloids are relatively free of surface errors. A theoretical analysis of clam shell distortion shows that this is a limiting factor in achieving low sidelobe levels with many commercially available low cost paraboloids. The use of absorbing pads and small reflecting plates for sidelobe reduction is also considered

    Coaxial prime focus feeds for paraboloidal reflectors

    Get PDF
    A TE11 - TM11 dual mode coaxial feed for use in prime focus paraboloidal antenna systems is investigated. The scattering matrix parameters of the internal bifurcation junction was determined by the residue calculus technique. The scattering parameters and radiation fields of the aperture were found from the Weinstein solution. The optimum modeing ratio for minimum cross-polarization was determined along with the corresponding optimum feed dimensions. A peak cross-polarization level of -58 dB is predicted. The frequency characteristics were also investigated and a bandwidth of 5% is predicted over which the cross-polarization remains below -30 dB, the input VSWR is below 1.15, and the phase error is less than 10 deg. Theoretical radiation patterns and efficiency curves for a paraboloidal reflector illuminated by this feed were computed. The predicted sidelobe level is below -30 dB and aperture efficiencies greater than 70% are possible. Experimental results are also presented that substantiates the theoretical results. In addition, experimental results for a 'short-cup' coaxial feed are given. The report includes extensive design data for the dual-mode feed along with performance curves showing cross-polarization as a function of feed parameters. The feed is useful for low-cost ground based receiving antennas for use in direct television satellite broadcasting service

    Mutual coupling effects in antenna arrays, volume 1

    Get PDF
    Mutual coupling between rectangular apertures in a finite antenna array, in an infinite ground plane, is analyzed using the vector potential approach. The method of moments is used to solve the equations that result from setting the tangential magnetic fields across each aperture equal. The approximation uses a set of vector potential model functions to solve for equivalent magnetic currents. A computer program was written to carry out this analysis and the resulting currents were used to determine the co- and cross-polarized far zone radiation patterns. Numerical results for various arrays using several modes in the approximation are presented. Results for one and two aperture arrays are compared against published data to check on the agreement of this model with previous work. Computer derived results are also compared against experimental results to test the accuracy of the model. These tests of the accuracy of the program showed that it yields valid data

    Surface-induced near-field scaling in the Knudsen layer of a rarefied gas

    Full text link
    We report on experiments performed within the Knudsen boundary layer of a low-pressure gas. The non-invasive probe we use is a suspended nano-electro-mechanical string (NEMS), which interacts with 4^4He gas at cryogenic temperatures. When the pressure PP is decreased, a reduction of the damping force below molecular friction P\propto P had been first reported in Phys. Rev. Lett. Vol 113, 136101 (2014) and never reproduced since. We demonstrate that this effect is independent of geometry, but dependent on temperature. Within the framework of kinetic theory, this reduction is interpreted as a rarefaction phenomenon, carried through the boundary layer by a deviation from the usual Maxwell-Boltzmann equilibrium distribution induced by surface scattering. Adsorbed atoms are shown to play a key role in the process, which explains why room temperature data fail to reproduce it.Comment: Article plus supplementary materia

    Electromagnetic surface states in structured perfect-conductor surfaces

    Full text link
    Surface-bound modes in metamaterials forged by drilling periodic hole arrays in perfect-conductor surfaces are investigated by means of both analytical techniques and rigorous numerical solution of Maxwell's equations. It is shown that these metamaterials cannot be described in general by local, frequency-dependent permittivities and permeabilities for small periods compared to the wavelength, except in certain limiting cases that are discussed in detail. New related metamaterials are shown to exhibit exciting optical properties that are elucidated in the light of our simple analytical approach.Comment: 5 figure

    Landau-Zener-St\"uckelberg Spectroscopy of a Superconducting Flux Qubit

    Full text link
    We proposed a new method to measure the energy spectrum of a superconducting flux qubit. Different from the conventional frequency spectroscopy, a short triangle pulse is used to drive the qubit through the anticrossing and generates Landau-Zener-St\"uckelberg interference patterns, from which the information of the energy spectrum can be extracted. Without installing microwave lines one can simplify the experimental setup and reduce the unwanted effects of noise. Moreover, the method can be applied to other quantum systems, opening the possibility of calibrating and manipulating qubits with linear pulses.Comment: 7 pages, 5 figure

    Self-Organized Criticality Effect on Stability: Magneto-Thermal Oscillations in a Granular YBCO Superconductor

    Full text link
    We show that the self-organized criticality of the Bean's state in each of the grains of a granular superconductor results in magneto-thermal oscillations preceding a series of subsequent flux jumps. We find that the frequency of these oscillations is proportional to the external magnetic field sweep rate and is inversely proportional to the square root of the heat capacity. We demonstrate experimentally and theoretically the universality of this dependence that is mainly influenced by the granularity of the superconductor.Comment: submitted to Physical Review Letters, 4 pages, RevTeX, 4 figures available as uufile

    Purcell effect in wire metamaterials

    Full text link
    We study theoretically the enhancement of spontaneous emission in wire metamaterials. We analyze the dependence of the Purcell factor dependence on wire dielectric constant for both electric and magnetic dipole sources, and find an optimal value of the dielectric constant for maximizing the Purcell factor for the electric dipole. We obtain analytical expressions for the Purcell factor and also provide estimates for the Purcell factor in realistic structures operating in both microwave and optical spectral range.Comment: 15 pages, 7 figure

    Nanowire metamaterials with extreme optical anisotropy

    Full text link
    We study perspectives of nanowire metamaterials for negative-refraction waveguides, high-performance polarizers, and polarization-sensitive biosensors. We demonstrate that the behavior of these composites is strongly influenced by the concentration, distribution, and geometry of the nanowires, derive an analytical description of electromagnetism in anisotropic nanowire-based metamaterials, and explore the limitations of our approach via three-dimensional numerical simulations. Finally, we illustrate the developed approach on the examples of nanowire-based high energy-density waveguides and non-magnetic negative index imaging systems with far-field resolution of one-sixth of vacuum wavelength.Comment: Updated version; accepted to Appl.Phys.Let
    corecore