1,419 research outputs found

    GENDER'S ROLE IN MANUSCRIPT ACCEPTANCE: SEX IN THE JOURNAL

    Get PDF
    Women authors fare poorly at the hands of referees in some economics journals, especially when the review process is not blind. Using data on the 155 manuscripts submitted to the NJARE for publication during the period 1984-88, we found no evidence of differential referee acceptance rates for manuscripts with female and male lead authors.Teaching/Communication/Extension/Profession,

    Multi-Party Pseudo-Telepathy

    Full text link
    Quantum entanglement, perhaps the most non-classical manifestation of quantum information theory, cannot be used to transmit information between remote parties. Yet, it can be used to reduce the amount of communication required to process a variety of distributed computational tasks. We speak of pseudo-telepathy when quantum entanglement serves to eliminate the classical need to communicate. In earlier examples of pseudo-telepathy, classical protocols could succeed with high probability unless the inputs were very large. Here we present a simple multi-party distributed problem for which the inputs and outputs consist of a single bit per player, and we present a perfect quantum protocol for it. We prove that no classical protocol can succeed with a probability that differs from 1/2 by more than a fraction that is exponentially small in the number of players. This could be used to circumvent the detection loophole in experimental tests of nonlocality.Comment: 11 pages. To be appear in WADS 2003 proceeding

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    On Quantum Algorithms

    Get PDF
    Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. We show how most known quantum algorithms, including quantum algorithms for factorising and counting, may be cast in this manner. Quantum searching is described as inducing a desired relative phase between two eigenvectors to yield constructive interference on the sought elements and destructive interference on the remaining terms.Comment: 15 pages, 8 figure

    Efficient discrete-time simulations of continuous-time quantum query algorithms

    Full text link
    The continuous-time query model is a variant of the discrete query model in which queries can be interleaved with known operations (called "driving operations") continuously in time. Interesting algorithms have been discovered in this model, such as an algorithm for evaluating nand trees more efficiently than any classical algorithm. Subsequent work has shown that there also exists an efficient algorithm for nand trees in the discrete query model; however, there is no efficient conversion known for continuous-time query algorithms for arbitrary problems. We show that any quantum algorithm in the continuous-time query model whose total query time is T can be simulated by a quantum algorithm in the discrete query model that makes O[T log(T) / log(log(T))] queries. This is the first upper bound that is independent of the driving operations (i.e., it holds even if the norm of the driving Hamiltonian is very large). A corollary is that any lower bound of T queries for a problem in the discrete-time query model immediately carries over to a lower bound of \Omega[T log(log(T))/log (T)] in the continuous-time query model.Comment: 12 pages, 6 fig

    CHOOSING ALTERNATIVES TO CONTAMINATED GROUND WATER SUPPLIES: A SEQUENTIAL DECISION FRAMEWORK UNDER UNCERTAINTY

    Get PDF
    In increasing numbers, communities that rely on groundwater for drinking supplies have discovered contamination from agricultural pesticides and herbicides, road salt, underground fuel storage, and septic systems. A variety of short- and long-run remedies are available with highly uncertain outcomes. An appropriate technique for solving a benefit-cost problem of this type is a sequential decision framework using stochastic dynamic programming procedures for solution. The approach is illustrated here by means of an application to the problem of the recent contamination of the groundwater of Whately, Massachusetts by the agricultural fumigant EDB and the pesticide aldicarb.Environmental Economics and Policy,

    Exact quantum query complexity of EXACTk,ln\rm{EXACT}_{k,l}^n

    Full text link
    In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly kk or ll of the nn input bits given by an oracle are 1. We find an optimal algorithm (for some cases), and a nontrivial general lower and upper bound on the minimum number of queries to the black box.Comment: 19 pages, fixed some typos and constraint

    Causality and Cirel'son bounds

    Get PDF
    An EPR-Bell type experiment carried out on an entangled quantum system can produce correlations stronger than allowed by local realistic theories. However there are correlations that are no-signaling and are more non local than the quantum correlations. Here we show that any correlations more non local than those achievable in an EPR-Bell type experiment necessarily allow -in the context of the quantum formalism- both for signaling and for generation of entanglement. We use our approach to rederive Cirel'son bound for the CHSH expression, and we derive a new Cirel'son type bound for qutrits. We discuss in detail the interpretation of our approach.Comment: 5 page

    Tsirelson's bound and supersymmetric entangled states

    Full text link
    A superqubit, belonging to a (2∣1)(2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more nonlocal than ordinary qubits, we construct a class of two-superqubit entangled states as a nonlocal resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric (3) Modified Rogers. In cases (1) and (2) the winning probability reaches the Tsirelson bound pwin=cos⁥2π/8≃0.8536p_{win}=\cos^2{\pi/8}\simeq0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265p_{win}\simeq0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities.Comment: Updated to match published version. Minor modifications. References adde
    • 

    corecore