3,370 research outputs found
Heat treating of a lamellar eutectic alloy (gamma/gamma prime + delta)
Eutectic superalloys are being developed at several laboratories for application as aircraft gas turbine airfoils. One such alloy was subjected to several heat treatments to determine if its mechanical properties could be improved. It was found that by partially dissolving the alloy at 1210 C and then aging at 900 C the tensile strength can be increased about 12 percent at temperatures up to 900 C. At 1040 C no change in tensile strength was observed. Times to rupture were measured between 760 and 1040 C and were essentially the same or greater than for as-grown material. Tensile and rupture ductility of the alloy are reduced by heat treatment. Photographs of the microstructure are shown
Microstructural changes caused by thermal treatment and their effects on mechanical properties of a gamma/gamma prime - delta eutectic alloy
Microstructural changes due to thermal treatments of a directionally solidified gamma/gamma'-delta eutectic alloy were investigated. Aging treatments of 8 to 48 hours and ranging from 750 to 1120 C were given to the alloy in both its as directionally solidified condition and after gamma' solutioning. Aging resulted in gamma' coarsening gamma precipitates in delta, and delta and gamma'' precipitates in delta. The tensile strength was increased about 12 percent at temperatures up to 900 C by a heat treatment. Times to rupture were essentially the same or greater than for as directionally solidified material. Tensile and rupture ductility in the growth direction of the alloy were reduced by the heat treatment
Carburization and heat treatment to cause carbide precipitation in gamma/gamma prime-delta eutectic alloys
In an attempt to improve their longitudinal shear strength, several directionally solidified eutectic alloy compositions with minor element modifications were pact, carburized, and heat treated to provide selective carbide precipitation at the cell and grain boundaries. The directionally solidified Ni-17.8 Nb-6Cr-2.5Al-3Ta (weight percent) alloy was selected for the shear strength evaluation because it showed the shallowest delta-denuded zone at the carburized surface. The carburization-carbide precipitation treatment, however, did not appear to improve the longitudinal shear strength of the alloy
Majorana Fermions Under Uniaxial Stress in Semiconductor-Superconductor Heterostructures
Spin-orbit coupled semiconductor nanowires with Zeeman splitting in proximity
contact with bulk -wave superconductivity have recently been proposed as a
promising platform for realizing Majorana fermions. However, in this setup the
chemical potential of the nanowire is generally pinned by the Fermi surface of
the superconductor. This makes the tuning of the chemical potential by external
electrical gates, a crucial requirement for unambiguous detection of Majorana
fermions, very challenging in experiments. Here we show that tunable
topological superconducting regime supporting Majorana fermions can be realized
in semiconductor nanowires using uniaxial stress. For n-type nanowires the
uniaxial stress tunes the effective chemical potential, while for p-type
systems the effective pairing may also be modified by stress, thus
significantly enhancing the topological minigap. We show that the required
stress, of the order of 0.1%, is within current experimental reach using
conventional piezo crystals.Comment: 5 pages, 4 figures, to appear in Phys. Rev. B (Rapid Communication
Temporal evolution of mesoscopic structure of some non-Euclidean systems using a Monte Carlo model
A Monte Carlo based computer model is presented to comprehend the contrasting
observations of Mazumder et al. [Phys. Rev. Lett. 93, 255704 (2004) and Phys.
Rev. B 72, 224208 (2005)], based on neutron-scattering measurements, on
temporal evolution of effective fractal dimension and characteristic length for
hydration of cement with light and heavy water. In this context, a theoretical
model is also proposed to elucidate the same.Comment: 31 Pages, 13 Figure
Diamagnetic susceptibility obtained from the six-vertex model and its implications for the high-temperature diamagnetic state of cuprate superconductors
We study the diamagnetism of the 6-vertex model with the arrows as directed
bond currents. To our knowledge, this is the first study of the diamagnetism of
this model. A special version of this model, called F model, describes the
thermal disordering transition of an orbital antiferromagnet, known as
d-density wave (DDW), a proposed state for the pseudogap phase of the high-Tc
cuprates. We find that the F model is strongly diamagnetic and the
susceptibility may diverge in the high temperature critical phase with power
law arrow correlations. These results may explain the surprising recent
observation of a diverging low-field diamagnetic susceptibility seen in some
optimally doped cuprates within the DDW model of the pseudogap phase.Comment: 4.5 pages, 2 figures, revised version accepted in Phys. Rev. Let
Structural, optical and nanomechanical properties of (1 1 1) oriented nanocrystalline ZnTe thin films
Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films
of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported.
X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction.
The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap
showed strong thickness dependence. The average film hardness and Young’s modulus obtained from loaddisplacement
curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of
(1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly
that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth
indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from
the nanoscratch test was ∼0.4.Financial support
in the form of fellowships to MSRNK and SK from the
ACRHEM project of DRDO is acknowledged
A Mushy-Zone Rayleigh Number to Describe Interdendritic Convection During Directional Solidification of Hypoeutectic Pb-Sb and Pb-Sn Alloys
Based on measurements of the specific dendrite surface area (S-nu), fraction of interdendritic liquid (phi), and primary dendrite spacing (lambda(1)) on transverse sections in a range of directionally solidified hypoeutectic Pb-Sb and Pb-Sn alloys that were grown at thermal gradients varying from 10 to 197 K cm(-1) and growth speeds ranging from 2 to 157 mum s(-1), it is observed that S-nu = lambda(1)(-1) S*(-0.33) (3.38 - 3.29 phi + 8.85 phi(2)), where S* = D-l G(eff)/V m(1) C-o (k - 1)/k, with D-l being the solutal diffusivity in the melt, G(eff) being the effective thermal gradient, V being the growth speed, m(l) being the liquidus slope, C-o being the solute content of the melt, and k being the solute partition coefficient. Use of this relationship in defining the mushy-zone permeability yields an analytical Rayleigh number that can be used to describe the extent of interdendritic convection during directional solidification. An increasing Rayleigh number shows a strong correlation with the experimentally observed reduction in the primary dendrite spacing as compared with those predicted theoretically in the absence of convection
- …