194 research outputs found

    Heart Failure Care: Testing Dyadic Dynamics Using the Actor-Partner Interdependence Model (APIM)— A Scoping Review

    Get PDF
    : Self-care behaviors are essential for the effective treatment of heart failure (HF), and poor self-care may lead to adverse clinical events in patients with HF. A growing body of literature addresses the need to analyze the characteristics of both patient and caregiver since they are in mutual, long-term interaction, and their reactions to events are dependent on each other. One of the most common approaches for analyzing data on HF self-care dyads is the Actor-Partner Interdependence Model (APIM). The purpose of this study was to conduct a scoping review to answer the following question: what did we learn from HF dyadic studies based on the APIM approach? Medline, Academic Search Ultimate, and CINAHL Complete databases were searched, using the terms "dyad," "dyadic," and "heart failure," for studies published between 2009 and April 2021. Fifteen studies were reviewed from a pool of 106 papers. Studies using the APIM approach revealed interrelated patient and caregiver characteristics that influence self-care and explain many complex dyadic behaviors. Our analysis provided evidence that (1) APIM is a useful analytical approach; (2) a family-oriented approach can improve the functioning of a patient with HF; and (3) social support from caregivers significantly enhances patients' adaptation to illness

    Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies

    Get PDF
    Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis

    Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology

    Get PDF
    An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak

    The Spatial and Temporal Construction of Confidence in the Visual Scene

    Get PDF
    Human subjects can report many items of a cluttered field a few hundred milliseconds after stimulus presentation. This memory decays rapidly and after a second only 3 or 4 items can be stored in working memory. Here we compared the dynamics of objective performance with a measure of subjective report and we observed that 1) Objective performance beyond explicit subjective reports (blindsight) was significantly more pronounced within a short temporal interval and within specific locations of the visual field which were robust across sessions 2) High confidence errors (false beliefs) were largely confined to a small spatial window neighboring the cue. The size of this window did not change in time 3) Subjective confidence showed a moderate but consistent decrease with time, independent of all other experimental factors. Our study allowed us to asses quantitatively the temporal and spatial access to an objective response and to subjective reports

    Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas

    Get PDF
    B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis

    Don’t make me angry, you wouldn’t like me when I’m angry: volitional choices to act or inhibit are modulated by subliminal perception of emotional faces

    Get PDF
    Volitional action and self-control—feelings of acting according to one’s own intentions and in being control of one’s own actions—are fundamental aspects of human conscious experience. However, it is unknown whether high-level cognitive control mechanisms are affected by socially salient but nonconscious emotional cues. In this study, we manipulated free choice decisions to act or withhold an action by subliminally presenting emotional faces: In a novel version of the Go/NoGo paradigm, participants made speeded button-press responses to Go targets, withheld responses to NoGo targets, and made spontaneous, free choices to execute or withhold the response for Choice targets. Before each target, we presented emotional faces, backwards masked to render them nonconscious. In Intentional trials, subliminal angry faces made participants more likely to voluntarily withhold the action, whereas fearful and happy faces had no effects. In a second experiment, the faces were made supraliminal, which eliminated the effects of angry faces on volitional choices. A third experiment measured neural correlates of the effects of subliminal angry faces on intentional choice using EEG. After replicating the behavioural results found in Experiment 1, we identified a frontal-midline theta component—associated with cognitive control processes—which is present for volitional decisions, and is modulated by subliminal angry faces. This suggests a mechanism whereby subliminally presented “threat” stimuli affect conscious control processes. In summary, nonconscious perception of angry faces increases choices to inhibit, and subliminal influences on volitional action are deep seated and ecologically embedded

    Antibiotic resistance determinants in the interplay between food and gut microbiota

    Get PDF
    A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such “fermented food microbiota” are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods

    Flow cytometric minimal residual disease assessment in B-cell precursor acute lymphoblastic leukaemia patients treated with CD19-targeted therapies: a EuroFlow study

    Get PDF
    The standardized EuroFlow protocol, including CD19 as primary B-cell marker, enables highly sensitive and reliable minimal residual disease (MRD) assessment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients treated with chemotherapy. We developed and validated an alternative gating strategy allowing reliable MRD analysis in BCP-ALL patients treated with CD19-targeting therapies. Concordant data were obtained in 92% of targeted therapy patients who remained CD19-positive, whereas this was 81% in patients that became (partially) CD19-negative. Nevertheless, in both groups median MRD values showed excellent correlation with the original MRD data, indicating that, despite higher interlaboratory variation, the overall MRD analysis was correct.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore