3,619 research outputs found
Electron dynamics in graphene with gate-defined quantum dots
We use numerically exact Chebyshev expansion and kernel polynomial methods to
study transport through circular graphene quantum dots in the framework of a
tight-binding honeycomb lattice model. Our focus lies on the regime where
individual modes of the electrostatically defined dot dominate the charge
carrier dynamics. In particular, we discuss the scattering of an injected Dirac
electron wave packet for a single quantum dot, electron confinement in the dot,
the optical excitation of dot-bound modes, and the propagation of an electronic
excitation along a linear array of dots.Comment: revised version, 6 pages, 7 figure
Tensor Forces and the Ground-State Structure of Nuclei
Two-nucleon momentum distributions are calculated for the ground states of
nuclei with mass number , using variational Monte Carlo wave functions
derived from a realistic Hamiltonian with two- and three-nucleon potentials.
The momentum distribution of pairs is found to be much larger than that of
pairs for values of the relative momentum in the range (300--600) MeV/c
and vanishing total momentum. This order of magnitude difference is seen in all
nuclei considered and has a universal character originating from the tensor
components present in any realistic nucleon-nucleon potential. The correlations
induced by the tensor force strongly influence the structure of pairs,
which are predominantly in deuteron-like states, while they are ineffective for
pairs, which are mostly in S states. These features should be
easily observable in two-nucleon knock-out processes, such as and .Comment: 4 pages including 3 figure
Dependence of two-nucleon momentum densities on total pair momentum
Two-nucleon momentum distributions are calculated for the ground states of
3He and 4He as a function of the nucleons' relative and total momenta. We use
variational Monte Carlo wave functions derived from a realistic Hamiltonian
with two- and three-nucleon potentials. The momentum distribution of pp pairs
is found to be much smaller than that of pn pairs for values of the relative
momentum in the range (300--500) MeV/c and vanishing total momentum. However,
as the total momentum increases to 400 MeV/c, the ratio of pp to pn pairs in
this relative momentum range grows and approaches the limit 1/2 for 3He and 1/4
for 4He, corresponding to the ratio of pp to pn pairs in these nuclei. This
behavior should be easily observable in two-nucleon knock-out processes, such
as A(e,e'pN).Comment: 3 pages, 3 figure
- …