1,427 research outputs found

    GLAMER Part I: A Code for Gravitational Lensing Simulations with Adaptive Mesh Refinement

    Full text link
    A computer code is described for the simulation of gravitational lensing data. The code incorporates adaptive mesh refinement in choosing which rays to shoot based on the requirements of the source size, location and surface brightness distribution or to find critical curves/caustics. A variety of source surface brightness models are implemented to represent galaxies and quasar emission regions. The lensing mass can be represented by point masses (stars), smoothed simulation particles, analytic halo models, pixelized mass maps or any combination of these. The deflection and beam distortions (convergence and shear) are calculated by modified tree algorithm when halos, point masses or particles are used and by FFT when mass maps are used. The combination of these methods allow for a very large dynamical range to be represented in a single simulation. Individual images of galaxies can be represented in a simulation that covers many square degrees. For an individual strongly lensed quasar, source sizes from the size of the quasar's host galaxy (~ 100 kpc) down to microlensing scales (~ 10^-4 pc) can be probed in a self consistent simulation. Descriptions of various tests of the code's accuracy are given.Comment: 13 pages, 9 figures, submitted to MNRAS, corrected some typos, replaced figure 9 after problem with numerical precision was discovere

    GLAMER Part II: Multiple Plane Gravitational Lensing

    Full text link
    We present an extension to multiple planes of the gravitational lensing code {\small GLAMER}. The method entails projecting the mass in the observed light-cone onto a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as halos, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic halos (NFW, NSIE, power-law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models ({\small MOKA}). Likewise, there are several different options for modeling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogs, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.Comment: 14 pages, 10 figures, submitted to MNRA

    Boundary states for WZW models

    Get PDF
    The boundary states for a certain class of WZW models are determined. The models include all modular invariants that are associated to a symmetry of the unextended Dynkin diagram. Explicit formulae for the boundary state coefficients are given in each case, and a number of properties of the corresponding NIM-reps are derived.Comment: 34 pages, harvmac (b), 4 eps-figures. One reference added; some minor typos, as well as the A2A_2 embedding into D4D_4, are correcte

    Disentangling dark sector models using weak lensing statistics

    Get PDF
    We perform multi-plane ray-tracing using the GLAMER gravitational lensing code within high-resolution light-cones extracted from the CoDECS simulations: a suite of cosmological runs featuring a coupling between Dark Energy and Cold Dark Matter. We show that the presence of the coupling is evident not only in the redshift evolution of the normalisation of the convergence power spectrum, but also in differences in non-linear structure formation with respect to {\Lambda}CDM. Using a tomographic approach under the assumption of a {\Lambda}CDM cosmology, we demonstrate that weak lensing measurements would result in a {\sigma}8 value that changes with the source redshift if the true underlying cosmology is a coupled Dark Energy one. This provides a generic null test for these types of models. We also find that different models of coupled Dark Energy can show either an enhanced or a suppressed correlation between convergence maps with differing source redshifts as compared to {\Lambda}CDM. This would provide a direct way to discriminate between different possible realisations of the coupled Dark Energy scenario. Finally, we discuss the impact of the coupling on several lensing observables for different source redshifts and angular scales with realistic source redshift distributions for current ground-based and future space-based lensing surveys.Comment: 17 pag. and 14 fig. replaced to match the accepted version (increased the number of light-cone realisations

    Conformal Field Theories, Graphs and Quantum Algebras

    Get PDF
    This article reviews some recent progress in our understanding of the structure of Rational Conformal Field Theories, based on ideas that originate for a large part in the work of A. Ocneanu. The consistency conditions that generalize modular invariance for a given RCFT in the presence of various types of boundary conditions --open, twisted-- are encoded in a system of integer multiplicities that form matrix representations of fusion-like algebras. These multiplicities are also the combinatorial data that enable one to construct an abstract ``quantum'' algebra, whose 6j6j- and 3j3j-symbols contain essential information on the Operator Product Algebra of the RCFT and are part of a cell system, subject to pentagonal identities. It looks quite plausible that the classification of a wide class of RCFT amounts to a classification of ``Weak C∗C^*- Hopf algebras''.Comment: 23 pages, 12 figures, LateX. To appear in MATHPHYS ODYSSEY 2001 --Integrable Models and Beyond, ed. M. Kashiwara and T. Miwa, Progress in Math., Birkhauser. References and comments adde

    Non-critical string pentagon equations and their solutions

    Full text link
    We derive pentagon type relations for the 3-point boundary tachyon correlation functions in the non-critical open string theory with generic c_{matter} < 1 and study their solutions in the case of FZZ branes. A new general formula for the Liouville 3-point factor is derived.Comment: 18 pages, harvmac; misprints corrected, section 3.2 extended, a new general formula for the Liouville 3-point factor adde

    Comments about quantum symmetries of SU(3) graphs

    Full text link
    For the SU(3) system of graphs generalizing the ADE Dynkin digrams in the classification of modular invariant partition functions in CFT, we present a general collection of algebraic objects and relations that describe fusion properties and quantum symmetries associated with the corresponding Ocneanu quantum groupo\"{i}ds. We also summarize the properties of the individual members of this system.Comment: 36 page

    Determination of quantum symmetries for higher ADE systems from the modular T matrix

    Get PDF
    We show that the Ocneanu algebra of quantum symmetries, for an ADE diagram (or for higher Coxeter-Dynkin systems, like the Di Francesco - Zuber system) is, in most cases, deduced from the structure of the modular T matrix in the A series. We recover in this way the (known) quantum symmetries of su(2) diagrams and illustrate our method by studying those associated with the three genuine exceptional diagrams of type su(3), namely E5, E9 and E21. This also provides the shortest way to the determination of twisted partition functions in boundary conformal field theory with defect lines.Comment: 30 pages, 16 figures. Several misprints have been corrected. We added several references and the appendix has been enlarged (one section on essential paths and one section devoted to open problems). This article will appear in the Journal of Mathematical Physic
    • 

    corecore