1,656 research outputs found

    Multiscale modeling in biology

    Get PDF
    The 1966 science-fction film Fantastic Voyage captured the public imagination with a clever idea: what fantastic things might we see and do if we could minaturize ourselves and travel through the bloodstream as corpuscles do? (This being Hollywood, the answer was that we'd save a fellow scientist from evildoers.

    Episodic, transient systemic acidosis delays evolution of the malignant phenotype: Possible mechanism for cancer prevention by increased physical activity

    Get PDF
    Background\ud \ud The transition from premalignant to invasive tumour growth is a prolonged multistep process governed by phenotypic adaptation to changing microenvironmental selection pressures. Cancer prevention strategies are required to interrupt or delay somatic evolution of the malignant invasive phenotype. Empirical studies have consistently demonstrated that increased physical activity is highly effective in reducing the risk of breast cancer but the mechanism is unknown.\ud \ud Results\ud \ud Here we propose the hypothesis that exercise-induced transient systemic acidosis will alter the in situ tumour microenvironment and delay tumour adaptation to regional hypoxia and acidosis in the later stages of carcinogenesis. We test this hypothesis using a hybrid cellular automaton approach. This model has been previously applied to somatic evolution on epithelial surfaces and demonstrated three phases of somatic evolution, with cancer cells escaping in turn from the constraints of limited space, nutrient supply and waste removal. In this paper we extend the model to test our hypothesis that transient systemic acidosis is sufficient to arrest, or at least delay, transition from in situ to invasive cancer.\ud \ud Conclusions\ud \ud Model simulations demonstrate that repeated episodes of transient systemic acidosis will interrupt critical evolutionary steps in the later stages of carcinogenesis resulting in substantial delay in the evolution to the invasive phenotype. Our results suggest transient systemic acidosis may mediate the observed reduction in cancer risk associated with increased physical activity

    Macroscopic limits of individual-based models for motile cell populations with volume exclusion

    Get PDF
    Partial differential equation models are ubiquitous in studies of motile cell populations, giving a phenomenological description of events which can be analyzed and simulated using a wide range of existing tools. However, these models are seldom derived from individual cell behaviors and so it is difficult to accurately include biological hypotheses on this spatial scale. Moreover, studies which do attempt to link individual- and population-level behavior generally employ lattice-based frameworks in which the artifacts of lattice choice at the population level are unclear. In this work we derive limiting population-level descriptions of a motile cell population from an off-lattice, individual-based model (IBM) and investigate the effects of volume exclusion on the population-level dynamics. While motility with excluded volume in on-lattice IBMs can be accurately described by Fickian diffusion, we demonstrate that this is not the case off lattice. We show that the balance between two key parameters in the IBM (the distance moved in one step and the radius of an individual) determines whether volume exclusion results in enhanced or slowed diffusion. The magnitude of this effect is shown to increase with the number of cells and the rate of their movement. The method we describe is extendable to higher-dimensional and more complex systems and thereby provides a framework for deriving biologically realistic, continuum descriptions of motile populations

    Parameter domains for Turing and stationary flow-distributed waves: I. The influence of nonlinearity

    Get PDF
    new type of instability in coupled reaction-diffusion-advection systems is analysed in a one-dimensional domain. This instability, arising due to the combined action of flow and diffusion, creates spatially periodic stationary waves termed flow and diffusion-distributed structures (FDS). Here we show, via linear stability analysis, that FDS are predicted in a considerably wider domain and are more robust (in the parameter domain) than the classical Turing instability patterns. FDS also represent a natural extension of the recently discovered flow-distributed oscillations (FDO). Nonlinear bifurcation analysis and numerical simulations in one-dimensional spatial domains show that FDS also have much richer solution behaviour than Turing structures. In the framework presented here Turing structures can be viewed as a particular instance of FDS. We conclude that FDS should be more easily obtainable in chemical systems than Turing (and FDO) structures and that they may play a potentially important role in biological pattern formation

    Mathematical modelling of tumour acidity

    Get PDF
    Acid-mediated tumour invasion is receiving increasing experimental and clinical attention. Previous models proposed to describe this phenomenon failed to capture key properties of the system, such as the existence of the benign steady state, or predicted incorrectly the size of the inter-tissue gap. Here we show that taking proper account of quiescence ameliorates these drawbacks as well as revealing novel behaviour. The simplicity of the model allows us to fully identify the key parameters controlling different aspects of behaviour

    Turing instabilities in general systems

    Get PDF
    We present necessary and sufficient conditions on the stability matrix of a general n(S2)-dimensional reaction-diffusion system which guarantee that its uniform steady state can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the system be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the sufficient condition of sufficiently rapid inhibitor diffusion relative to the activator subsystem are established in three theorems which form the core of our results. Given the possibility that the unstable (activator) subsystem involves several species (dimensions), we present a classification of the analytically deduced Turing bifurcations into p (1 h p h (n m 1)) different classes. For n = 3 dimensions we illustrate numerically that two types of steady Turing pattern arise in one spatial dimension in a generic reaction-diffusion system. The results confirm the validity of an earlier conjecture [12] and they also characterise the class of so-called strongly stable matrices for which only necessary conditions have been known before [23, 24]. One of the main consequences of the present work is that biological morphogens, which have so far been expected to be single chemical species [1-9], may instead be composed of two or more interacting species forming an unstable subsystem

    Distinguishing graded & ultrasensitive signalling cascade kinetics by the shape of morphogen gradients in Drosophila

    Get PDF
    Recently, signalling gradients in cascades of two-state reaction–diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose–response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared

    Two-stage Turing model for generating pigment patterns on the leopard and the jaguar

    Get PDF
    Based on the results of phylogenetic analysis, which showed that flecks are the primitive pattern of the felid family and all other patterns including rosettes and blotches develop from it, we construct a Turing reaction-diffusion model which generates spot patterns initially. Starting from this spotted pattern, we successfully generate patterns of adult leopards and jaguars by tuning parameters of the model in the subsequent phase of patterning
    • …
    corecore