19 research outputs found

    Analysis and development prospects of electronic and mobile payments in Russia

    Get PDF
    The article analyses electronic systems development, its impact on the development of the economy and a number of sectors of life. It enumerates and analyses basic forms of ecash circulation. The article demonstrates the need for development of this sphere of economy as well as financial systems

    Property Optimization for TWIP Steels – Effect of Pre-deformation Temperature on Fatigue Properties

    Get PDF
    The current work investigates the impact of pre-deformation temperatures on the microstructure evolution and the subsequent cyclic stress-strain response of high-manganese steel showing twinning-induced plasticity (TWIP) at room temperature (RT). Deformation at low temperatures increases the hardening rate at low to medium degrees of deformation through concurrent martensitic transformation. In contrast, high temperatures promote dislocation slip. Thus, employing pre-treatments at temperatures below and above RT leads to the evolution of considerably different microstructures. Low-cycle fatigue experiments revealed distinct differences for the pre-treated TWIP steels

    Characterization of human and rodent native and recombinant adenosine A2B receptors by radioligand binding studies

    Get PDF
    Adenosine A2B receptors of native human and rodent cell lines were investigated using [3H]PSB-298 [(8-{4-[2-(2-hydroxyethylamino)-2-oxoethoxy]phenyl}-1-propylxanthine] in radioligand binding studies. [3H]PSB-298 showed saturable and reversible binding. It exhibited a KD value of 60 ± 1 nM and limited capacity (Bmax = 3.511 fmol per milligram protein) at recombinant human adenosine A2B receptors expressed in human embryonic kidney cells (HEK-293). The addition of sodium chloride (100 mM) led to a threefold increase in the number of binding sites recognized by the radioligand. The curve of the agonist 5′-N-ethylcarboxamidoadenosine (NECA) was shifted to the right in the presence of NaCl, while the curve of the antagonist PSB-298 was shifted to the left, indicating that PSB-298 may be an inverse agonist at A2B receptors. Adenosine A2B receptors were shown to be the major adenosine A2 receptor subtype on the mouse neuroblastoma x rat glioma hybrid cell line NG108-15 cells. Binding studies at rat INS-1 cells (insulin secreting cell line) demonstrated that [3H]PSB-298 is a selective radioligand for adenosine A2B binding sites in this cell line

    CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

    Get PDF
    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs) have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co3O4 nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM) images of the nanocrystals (NCs) sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co3O4 nanostructures, and the full width at half maximum (FWHM) of the peaks indicates a small particle size of the nanocrystals

    CuO and Co 3 O 4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

    No full text
    Copper oxide and cobalt oxide (CuO, Co 3 O 4 ) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs) have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co 3 O 4 nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM) images of the nanocrystals (NCs) sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co 3 O 4 nanostructures, and the full width at half maximum (FWHM) of the peaks indicates a small particle size of the nanocrystals
    corecore