703 research outputs found
Light nuclei quasiparticle energy shift in hot and dense nuclear matter
Nuclei in dense matter are influenced by the medium. In the cluster mean
field approximation, an effective Schr\"odinger equation for the -particle
cluster is obtained accounting for the effects of the correlated medium such as
self-energy, Pauli blocking and Bose enhancement. Similar to the single-baryon
states (free neutrons and protons), the light elements (,
internal quantum state ) are treated as quasiparticles with energies
. These energies depend on the center of mass
momentum , as well as temperature and the total densities
of neutrons and protons, respectively. No equilibrium is considered so
that (or the corresponding chemical potentials ) are
fixed independently.
For the single nucleon quasiparticle energy shift, different approximate
expressions such as Skyrme or relativistic mean field approaches are well
known. Treating the -particle problem in appropriate approximations, results
for the cluster quasiparticle shifts are given. Properties of dense nuclear
matter at moderate temperatures in the subsaturation density region considered
here are influenced by the composition. This in turn is determined by the
cluster quasiparticle energies, in particular the formation of clusters at low
densities when the temperature decreases, and their dissolution due to Pauli
blocking as the density increases. Our finite-temperature Green function
approach covers different limiting cases: The low-density region where the
model of nuclear statistical equilibrium and virial expansions can be applied,
and the saturation density region where a mean field approach is possible
Interpolation formula for the electrical conductivity of nonideal plasmas
On the basis of a quantum-statistical approach to the electrical conductivity
of nonideal plasmas we derive analytical results in the classical low-density
regime, in the degenerate Born limit, and for the contribution of the
Debye-Onsager relaxation effect. These explicit results are used to construct
an improved interpolation formula of the electrical conductivity valid in a
wide range of temperature and density which allows to compare with available
experimental data of nonideal plasmas.Comment: 7 pages, 1 tabl
Towards an understanding of Type Ia supernovae from a synthesis of theory and observations
Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe
Ia) have become a major tool to determine the expansion history of the
Universe, considerable attention has been given to, both, observations and
models of these events over the past 15 years. Here, we summarize new
observational constraints, address recent progress in modeling Type Ia
supernovae by means of three-dimensional hydrodynamic simulations, and discuss
several of the still open questions. It will be be shown that the new models
have considerable predictive power which allows us to study observable
properties such as light curves and spectra without adjustable non-physical
parameters. This is a necessary requisite to improve our understanding of the
explosion mechanism and to settle the question of the applicability of SNe Ia
as distance indicators for cosmology. We explore the capabilities of the models
by comparing them with observations and we show how such models can be applied
to study the origin of the diversity of SNe Ia.Comment: 26 pages, 13 figures, Frontiers of Physics, in prin
Momentum conservation and local field corrections for the response of interacting Fermi gases
We reanalyze the recently derived response function for interacting systems
in relaxation time approximation respecting density, momentum and energy
conservation. We find that momentum conservation leads exactly to the local
field corrections for both cases respecting only density conservation and
respecting density and energy conservation. This rewriting simplifies the
former formulae dramatically. We discuss the small wave vector expansion and
find that the response function shows a high frequency dependence of
which allows to fulfill higher order sum rules. The momentum
conservation also resolves a puzzle about the conductivity which should only be
finite in multicomponent systems
On Unconstrained SU(2) Gluodynamics with Theta Angle
The Hamiltonian reduction of classical SU(2) Yang-Mills field theory to the
equivalent unconstrained theory of gauge invariant local dynamical variables is
generalized to the case of nonvanishing theta angle. It is shown that for any
theta angle the elimination of the pure gauge degrees of freedom leads to a
corresponding unconstrained nonlocal theory of self-interacting second rank
symmetric tensor fields, and that the obtained classical unconstrained
gluodynamics with different theta angles are canonically equivalent as on the
original constrained level.Comment: 13 pages Revtex, no figures; several misprints corrected; version to
appear in Eur. Phys. J.
Pair Fluctuations in Ultra-small Fermi Systems within Self-Consistent RPA at Finite Temperature
A self-consistent version of the Thermal Random Phase Approximation (TSCRPA)
is developed within the Matsubara Green's Function (GF) formalism. The TSCRPA
is applied to the many level pairing model. The normal phase of the system is
considered. The TSCRPA results are compared with the exact ones calculated for
the Grand Canonical Ensemble. Advantages of the TSCRPA over the Thermal Mean
Field Approximation (TMFA) and the standard Thermal Random Phase Approximation
(TRPA) are demonstrated. Results for correlation functions, excitation
energies, single particle level densities, etc., as a function of temperature
are presented.Comment: 22 pages, 13 figers and 3 table
- …