18 research outputs found

    Effect of mesh on springback in 3D finite element analysis of flexible microrolling

    Get PDF
    In flexible microrolling, springback in thickness direction is a critical indicator to determine the forming quality. Accurate prediction of springback is one of the significant aspects in the finite element analysis of flexible microrolling. Meshing is a step of great importance in finite element analysis of manufacturing process as it directly determines the accuracy of the FEA results as well as the requested computational time. This paper presents a numerical study on revealing the mesh effects on the accuracy of springback estimation utilising ABAQUS/Standard for modelling and analyses. Two types of meshes with six mesh sizes for each mesh type are considered in this study and the optimal mesh type and mesh size have been found to obtain accurate value of springback while saving as much computational time as possible

    Numerical study on springback prediction of aged steel based on quasi-static strain-hardening material model

    Get PDF
    Material model of aged steel, the material\u27s stress and strain behavior in the region of yielding, plays a critical role in springback prediction of FEA simulation. In most of the FEA simulations, the material is modeled as a linear elastic and then after yielding, a linear strain-hardening model or a power-law strain-hardening model. In the prediction of springback by FEA simulation, there is always a problem that the prediction is far away to the true springback of the products or samples. This paper employs a quasi-static strain-hardening material model which gives a more accurate description of the material properties of aged steel for FEA simulation of the forming. A typical V-bending for aged steel is simulated with finite element software, ABAQUS, to predict the springback. A 2D model which consists of multiple rigid bodies and a deformable body is performed in this study adopting four-node linear plane-strain elements. Meanwhile, a 2D model that applies a power-law strain-hardening material model is implemented as a contrast. By comparing the results from the simulations based on different material models with those from experiments, a better correlation between the simulations using a quasi-static strain-hardening material model and the experiments is achieved. Besides, the bending process for aged steel is also analyzed utilizing quasi-static strain-hardening material model with variable ageing coefficients. It is drawn that the greater the ageing coefficient within certain range, the greater the springback simulation accuracy by comparison between simulation and experiment results. In addition, as the upper yield stress is not easy to be measured directly, a method for reverse calculation of upper yield stress through springback ratio and quasi-static flow stress is proposed

    A Study of Micro Flexible Rolling of Thin Metals

    No full text

    A Study of Micro Flexible Rolling of Thin Metals

    Get PDF
    Eines der dringendsten Probleme, die sich für Europa stellen, ist die Sprachenfrage. Zwei Lösungsmöglichkeiten kann man dabei ins Auge fassen: zum einen die Entscheidung für eine einzige dominierende Sprache, in der man sich künftig verständigt, also ein globalisiertes Angloamerikanisch; zum anderen den Erhalt der Pluralität, die immer wieder neu die Bedeutung und Wichtigkeit von Unterschieden deutlich macht – nur dies kann die Kommunikation zwischen Sprachen und Kulturen tatsächlich erleicht..

    Finite element analysis of forward slip in micro flexible rolling of thin aluminium strips

    Get PDF
    This study delineates a novel finite element model to consider a pattern of process parameters affecting the forward slip in micro flexible rolling, which focuses on the thickness transition area of the rolled strip with thickness in the micrometre range. According to the strip marking method, the forward slip is obtained by comparison between the distance of the bumped ridges on the roll and that of the markings indented by the ridges, which not only simplifies the calculation process, but also maintains the accuracy as compared with theoretical estimates. The simulation results identify the qualitative and quantitative variations of forward slip with regard to the variations in the reduction, rolling speed, estimated friction coefficient and the ratio of strip thickness to grain size, respectively, which also locate the cases wherein the relative sliding happens between the strip and the roll. The developed grain-based finite element model featuring 3D Voronoi tessellations allows for the investigation of the scatter effect of forward slip, which gets strengthened by the enhanced effect of every single grain attributed to the dispersion of fewer grains in a thinner strip with respect to constant grain size. The multilinear regression analysis is performed to establish a statistical model based upon the simulation results, which has been proven to be accurate in quantitatively describing the relationship between the forward slip and the aforementioned process parameters by considering both correlation and error analyses. The magnitudes of each process parameter affecting forward slip are also determined by variance analysis

    Analysis of micro flexible rolling with consideration of material heterogeneity

    Get PDF
    This paper establishes a finite element model to numerically study the springback in thickness direction during micro flexible rolling process, in which 3D Voronoi tessellation has been applied to describe grain boundary and generation process of grain in the workpiece. To reflect material heterogeneity, nine kinds of mechanical properties defined by nine types of heterogeneity coefficients are selected and assigned to Voronoi polyhedrons as per the statistical distribution of hardness of grains identified by micro hardness testing. Initial workpiece thicknesses of 100, 250 and 500 μm with reduction changing from 20% to 50% are respectively considered in the numerical simulation of micro flexible rolling process, and the effects of front and back tensions on the average springback have been discussed. With average grain sizes of 1, 10, 50, 100 and 250 μm respectively employed in the workpieces with the aforesaid initial thicknesses, the scatter of springback in thickness direction has been determined, and a model for springback has also been developed based on the simulation results

    Analysis of Springback Behaviour in Micro Flexible Rolling of Crystalline Materials

    Get PDF
    ,is paper presents a constitutive modelling of the polycrystalline thin metal strip under a state of combined loading in microflexible rolling. ,e concept of grained inhomogeneity is incorporated into the classic Chaboche hardening model that accounts for the Bauschinger effect, in order to provide more precise description and analysis of the springback mechanism in the particular forming operation. ,e model is first implemented in the finite element program ABAQUS to numerically predict the stress-strain relationship of 304 stainless steel specimens over a range of average grain sizes. After validation of the developed model by comparison of predicted curves and actual stress-strain data points, it is further applied to predict the thickness directional springback in microflexible rolling of 304 stainless steel strips with initial thickness of 250 μm and reduction changing from 5 to 10%. ,e model predictions show a reasonable agreement with the experimental measurements and have proven to be more accurate than those obtained from the conventional multilinear isotropic hardening model in combination with the Voronoi tessellation technique. In addition, the variation of thickness directional springback along with the scatter effect is compared and analysed in regard to the average grain size utilising both qualitative and quantitative approaches in respect of distinct types of data at different reductions

    Finite element method analysis of surface roughness transfer in micro flexible rolling

    No full text
    Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to decrease the surface roughness. Four types of initial workpiece surface roughness are studied in the simulation, and the influences of process parameters, such as friction coefficient, rolling speed and roll gap adjusting speed, on surface asperity flattening of workpieces with different initial surface roughness have been numerically investigated and analysed

    Finite Element Analysis of Forward Slip in Micro Flexible Rolling of Thin Aluminium Strips

    No full text
    This study delineates a novel finite element model to consider a pattern of process parameters affecting the forward slip in micro flexible rolling, which focuses on the thickness transition area of the rolled strip with thickness in the micrometre range. According to the strip marking method, the forward slip is obtained by comparison between the distance of the bumped ridges on the roll and that of the markings indented by the ridges, which not only simplifies the calculation process, but also maintains the accuracy as compared with theoretical estimates. The simulation results identify the qualitative and quantitative variations of forward slip with regard to the variations in the reduction, rolling speed, estimated friction coefficient and the ratio of strip thickness to grain size, respectively, which also locate the cases wherein the relative sliding happens between the strip and the roll. The developed grain-based finite element model featuring 3D Voronoi tessellations allows for the investigation of the scatter effect of forward slip, which gets strengthened by the enhanced effect of every single grain attributed to the dispersion of fewer grains in a thinner strip with respect to constant grain size. The multilinear regression analysis is performed to establish a statistical model based upon the simulation results, which has been proven to be accurate in quantitatively describing the relationship between the forward slip and the aforementioned process parameters by considering both correlation and error analyses. The magnitudes of each process parameter affecting forward slip are also determined by variance analysis

    Evaluation and optimisation of micro flexible rolling process parameters by orthogonal trial design

    No full text
    As the strip thickness is in the range of sub-millimetre in micro flexible rolling, springback ratio in thickness direction has a significant impact on product quality, which is influenced by various process parameters during forming process. This paper focuses on performing a numerical and experimental investigation to evaluate the effects of initial strip thickness, friction coefficient and rolling speed on the springback ratio in thickness direction during the micro flexible rolling process with reductions of 20 to 50% using orthogonal trial design, and wherein the three-level factors orthogonal array is chosen and nine representative orthogonal trials for each reduction have been implemented. With the significance of each process parameter for each reduction identified by variance analysis, an optimum proposal for each reduction to obtain the minimum springback ratio has been determined numerically, which is afterwards confirmed by experimental data. Moreover, a qualitative estimate of the influences of process parameters on the rolling force, as well as a quantitative analysis of the relationship between the length of thickness transition zone and the parameter level have also been carried out with reference to the obtained results
    corecore