116 research outputs found

    (4-Aza-1-azoniabicyclo­[2.2.2]octane-κN 4)trichloridocobalt(II)

    Get PDF
    In the title compound, [CoCl3(C6H13N2)], the tetra­hedrally coordinated CoII ion has Co—Cl distances ranging from 2.2220 (11) to 2.2449 (9) Å and a Co—N distance of 2.056 (2) Å. In the crystal, N—H⋯Cl hydrogen bonds link mol­ecules into chains in [010]. Weak C—H⋯Cl inter­actions stabilize further the crystal packing

    Seasonal human coronavirus NL63 epidemics in children in Guilin, China, reveal the emergence of a new subgenotype of HCoV-NL63

    Get PDF
    IntroductionSeasonal human coronavirus NL63 (HCoV-NL63) is a frequently encountered virus linked to mild upper respiratory infections. However, its potential to cause more severe or widespread disease remains an area of concern. This study aimed to investigate a rare localized epidemic of HCoV-NL63-induced respiratory infections among pediatric patients in Guilin, China, and to understand the viral subtype distribution and genetic characteristics.MethodsIn this study, 83 pediatric patients hospitalized with acute respiratory infections and positive for HCoV-NL63 were enrolled. Molecular analysis was conducted to identify the viral subgenotypes and to assess genetic variations in the receptor-binding domain of the spiking protein.ResultsAmong the 83 HCoV-NL63-positive children, three subgenotypes were identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation (I507L) in the receptor-binding domain of the spiking protein, which was also observed in the previously reported C3 genotype. This mutation may suggest potential increases in viral transmissibility and pathogenicity.DiscussionThe findings of this study highlight the rapid mutation dynamics of HCoV-NL63 and its potential for increased virulence and epidemic transmission. The presence of a unique mutation in the C4 subtype, shared with the C3 genotype, raises concerns about the virus’s evolving nature and its potential public health implications. This research contributes valuable insights into the understanding of HCoV-NL63’s epidemiology and pathogenesis, which is crucial for effective disease prevention and control strategies. Future studies are needed to further investigate the biological significance of the observed mutation and its potential impact on the virus’s transmissibility and pathogenicity

    Impregnation of Scots Pine with Compound Modifier and Induction of In-Situ Polymerization by Heating

    No full text
    Recently, Scots pine wood has received tremendous attention in China because of its highstrength weight ratio and aesthetic grain pattern.However, there are some disadvantages for Scots pinesuch as its low density, inferior mechanical strength, and low dimensional stability. In the presentresearch, Scots pine has been impregnation by pulse dipping at 0.7-0.8 MPa for 150 minutes with ureaformaldehydeprepolymer, 1,3-dimethylol-4,5-dihydroxyethyleneurea and sodium silicate sol, and thesodium silicate sol has been cured within the wood micropores by in situ gel polymerization by kilndrying, so that a Si-O-Si framework can be deposited inside the wood structure. The mechanical propertiesand dimensional stability of the modified wood were investigated, and the water absorption decreasedfrom 121.13% to 59.13%. The Fouriertransform infrared spectroscopy showed the chemical changes inwood after modification and illustrated the modified mechanism. The thermogravimetric analyzer showedthat the thermal stability of modified wood improved. Finally, scanning electron microscopy and energydispersive analysis of X-rays micrographs proved that the good interfacial adhesion of modifier betweenwood fiber and polymer.

    Hiding Messages Based on DNA Sequence and Recombinant DNA Technique

    No full text

    Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a) pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics

    No full text
    Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10 mu g/L), BaP (10 mu g/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens

    Sub-Hourly Variability of Stable Isotopes in Precipitation in the Marginal Zone of East Asian Monsoon

    No full text
    Isotope data at mid-latitude locations are commonly available on annual, monthly, and daily timescales; however, they are rarely available for the variations occurring on the sub-hourly scale within individual precipitation events. To fill this gap, sub-hourly (every 10 min) sequential samples were collected for nine precipitation events, and the δ18O values of the individual events were analyzed from June to October 2019 in Lanzhou, Northwest China. The Sequential Meteoric Water Line (SMWL) correlation between δ2H and δ18O is δ2H = 7.33 δ18O + 9.78 (R2 = 0.97, N = 170). All events had a similar decreasing variability pattern in the initial period (before the vertical gray dotted line), while during the later period (after the vertical gray dotted line), negative δ18O values dominated, exhibiting a different pattern. Variations in the δ18O values were about 1–5‰ during most intra-events. We found that δ18O values mainly exhibit three patterns in the intra-event, namely a “V”-shaped pattern, an “L”-shaped pattern, and a decreasing pattern. Positive δ18O values are controlled by re-evaporation in the beginning period. Relative humidity has no effect on the δ18O values of precipitation events, mainly because dry and warm conditions are conducive to the evaporation of rainwater in the study region. The changes in the isotopic characteristics of precipitation are closely linked to the regional climate. The continuous analysis of precipitation samples revealed that the rapid change of δ18O values is related to different moisture sources and transport paths. A new air mass with enriched heavy isotope intrusion can change the isotopic composition in the intra-event

    The Degradation and Repolymerization Analysis on Solvolysis Liquefaction of Corn Stalk

    No full text
    One of the most effective and renewable utilization methods for lignocellulosic feedstocks is the transformation from solid materials to liquid products. In this work, corn stalk (CS) was liquified with polyethylene glycol 400 (PEG400) and glycerol as the liquefaction solvents, and sulfuric acid as the catalyst. The liquefaction conditions were optimized with the liquefaction yield of 95.39% at the reaction conditions of 150 °C and 120 min. The properties of CS and liquefaction residues (LRs) were characterized using ATR–FTIR, TG, elemental analysis and SEM. The chemical components of liquefied product (LP) were also characterized by GC–MS. The results indicated that the depolymerization and repolymerization reaction took place simultaneously in the liquefaction process. The depolymerization of CS mainly occurred at the temperature of <150 °C, and the repolymerization of biomass derivatives dominated at a higher temperature of 170 °C by the lignin derivatives repolymerization with cellulose derivatives, hemicellulose derivatives and PEG400 and self-condensation of lignin derivatives. The solvolysis liquefaction of CS could be classified into the mechanism of electrophilic substitution reaction attacked by the hydrogen cation

    Determination of Fumonisin B1 by Aptamer-Based Fluorescence Resonance Energy Transfer

    No full text
    Fumonisin FB is produced by Fusarium moniliforme Sheld, of which FB1 is the most common and the most toxic. The establishment of a rapid detection method is an important means to prevent and control FB1 pollution. A highly sensitive fluorescent sensor based on an aptamer for the rapid detection of fumonisin B1 (FB1) in corn was established. In this study, 5-carboxyfluorescein (FAM) was labeled on the aptamer of FB1 (F10). F10 was adsorbed on the surface of graphene oxide (GO) by π-π stacking. The FAM fluorescence signal could be quenched by fluorescence resonance energy transfer between fluorescent molecules and graphene oxide (GO). In the presence of FB1, the binding efficiency of the aptamer to GO was reduced. Therefore, the content of FB1 in corn samples was determined by fluorescence measurements of mixed FAM-labeled F10, GO and corn samples. This method had a good linear relationship in an FB1 concentration range of 0–3000 ng/mL. The equation was y = 0.2576x + 10.98, R2 = 0.9936. The limit of detection was 14.42 ng/mL, and the limit of quantification was 43.70 ng/mL. The recovery of a spiked standard in the corn sample was 89.13–102.08%, and the time of detection was 30 min

    Syntheses, Characterization, and Application of Tridentate Phenoxyimino-Phenoxy Aluminum Complexes for the Coupling of Terminal Epoxide with CO<sub>2</sub>: From Binary System to Single Component Catalyst

    No full text
    A series of binuclear aluminum complexes 1–3 supported by tridentate phenoxyimino-phenoxy ligands was synthesized and used as catalysts for the coupling reaction of terminal epoxide with carbon dioxide. The aluminum complex 1, which is catalytically inactive toward the coupling of epoxide with CO2 by itself, shows moderate activity in the presence of excess nucleophiles or organic bases at high temperature. In sharp contrast to complex 1, bifunctional complexes 2 and 3, which incorporate tertiary amine groups as the built-in nucleophile, are able to efficiently transform terminal epoxide with CO2 to corresponding cyclic carbonates as a sole product by themselves at 100 °C. The number of amine groups on the ligand skeleton and the reaction temperature exert a great influence on the catalytic activity. The bifunctional complexes 2 and 3 are also active at low carbon dioxide pressure such as 2 atm or atmospheric CO2 pressure. Kinetic studies of the coupling reactions of chloropropylene oxide/CO2 and styrene oxide/CO2 using bifunctional catalysts under atmospheric pressure of CO2 demonstrate that the coupling reaction has a first-order dependence on the concentration of the epoxide

    Establishment of an Improved ELONA Method for Detecting Fumonisin B<sub>1</sub> Based on Aptamers and Hemin-CDs Conjugates

    No full text
    Fumonisin B1 (FB1) is a strong mycotoxin that is ubiquitous in agricultural products. The establishment of rapid detection methods is an important means to prevent and control FB1 contamination. In this study, an improved enzyme-linked oligonucleotide assay (ELONA) method was designed and tested to detect the contents of FB1 in maize (corn) samples. F10 modified with biotin was bound to an enzyme label plate that was coated with streptavidin (SA) in advance, and carbon dots (CDs) were used to catalyze the color of tetramethylbenzidine (TMB). The complementary chain of F10 was modified with an amino group and coupled with CDs to obtain conjugates. The sample and conjugates were then added to the enzyme plate coated with F10 (an FB1 aptamer). Upon completion of the color reaction, the absorbance was measured at 450 nm. The LOD of this method was 4.30 ng/mL and the LOQ was 13.03 ng/mL. We observed a linear relationship in the FB1 concentration range of 0–100 ng/mL. The standard curve was y = −0.001482 × x + 0.3463, R2 = 0.9918, and the experimental results could be directly measured visually. The recovery of the maize sample was 97.5–99.23% and 94.54–99.25%, and the total detection time was 1 h
    • …
    corecore