11,798 research outputs found
Spectral Clustering with Imbalanced Data
Spectral clustering is sensitive to how graphs are constructed from data
particularly when proximal and imbalanced clusters are present. We show that
Ratio-Cut (RCut) or normalized cut (NCut) objectives are not tailored to
imbalanced data since they tend to emphasize cut sizes over cut values. We
propose a graph partitioning problem that seeks minimum cut partitions under
minimum size constraints on partitions to deal with imbalanced data. Our
approach parameterizes a family of graphs, by adaptively modulating node
degrees on a fixed node set, to yield a set of parameter dependent cuts
reflecting varying levels of imbalance. The solution to our problem is then
obtained by optimizing over these parameters. We present rigorous limit cut
analysis results to justify our approach. We demonstrate the superiority of our
method through unsupervised and semi-supervised experiments on synthetic and
real data sets.Comment: 24 pages, 7 figures. arXiv admin note: substantial text overlap with
arXiv:1302.513
- …