548 research outputs found
Common Origin for Surface Reconstruction and the Formation of Chains of Metal Atoms
During the fracture of nanocontacts gold spontaneously forms freely suspended
chains of atoms, which is not observed for the iso-electronic noble metals Ag
and Cu. Au also differs from Ag and Cu in forming reconstructions at its
low-index surfaces. Using mechanically controllable break junctions we show
that all the 5d metals that show similar reconstructions (Ir, Pt and Au) also
form chains of atoms, while both properties are absent in the 4d neighbor
elements (Rh, Pd, Ag), indicating a common origin for these two phenomena. A
competition between s and d bonding is proposed as an explanation
Origin of anomalously long interatomic distances in suspended gold chains
The discovery of long bonds in gold atom chains has represented a challenge
for physical interpretation. In fact, interatomic distances frequently attain
3.0-3.6 A values and, distances as large as 5.0 A may be seldom observed. Here,
we studied gold chains by transmission electron microscopy and performed
theoretical calculations using cluster ab initio density functional formalism.
We show that the insertion of two carbon atoms is required to account for the
longest bonds, while distances above 3 A may be due to a mixture of clean and
one C atom contaminated bonds.Comment: 4 pages, 4 Postscript figures, to be published in Physical Review
Letter
g factor of Li-like ions with nonzero nuclear spin
The fully relativistic theory of the g factor of Li-like ions with nonzero
nuclear spin is considered for the (1s)^2 2s state. The magnetic-dipole
hyperfine-interaction correction to the atomic g factor is calculated including
the one-electron contributions as well as the interelectronic-interaction
effects of order 1/Z. This correction is combined with the
interelectronic-interaction, QED, nuclear recoil, and nuclear size corrections
to obtain high-precision theoretical values for the g factor of Li-like ions
with nonzero nuclear spin. The results can be used for a precise determination
of nuclear magnetic moments from g factor experiments.Comment: 20 pages, 5 figure
Elastic and vibrational properties of alpha and beta-PbO
The structure, electronic and dynamic properties of the two layered alpha
(litharge) and beta (massicot) phases of PbO have been studied by density
functional methods. The role of London dispersion interactions as leading
component of the total interaction energy between layers has been addressed by
using the Grimme's approach, in which new parameters for Pb and O atoms have
been developed. Both gradient corrected and hybrid functionals have been
adopted using Gaussian-type basis sets of polarized triple zeta quality for O
atoms and small core pseudo-potential for the Pb atoms. Basis set superposition
error (BSSE) has been accounted for by the Boys-Bernardi correction to compute
the interlayer separation. Cross check with calculations adopting plane waves
that are BSSE free have also been performed for both structures and vibrational
frequencies. With the new set of proposed Grimme's type parameters structures
and dynamical parameters for both PbO phases are in good agreement with
experimental data.Comment: 8 pages, 5 figure
The Be7(p,gamma)B8 cross section and the properties of Be7
We study the nonresonant part of the Be()B reaction using a
three-cluster resonating group model that is variationally converged and
virtually complete in the He+He+ model space. The importance of
using adequate nucleon-nucleon interaction is demonstrated. We find that the
low-energy astrophysical -factor is linearly correlated with the quadrupole
moment of Be. A range of parameters is found where the most important
Be and Li properties are reproduced simultaneously; the corresponding
-factor at keV is eVb.Comment: REVTEX, 8 pages and 2 postscript figures. MAP-9
Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes
Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin–orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f1 family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin–orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin–orbit coupled states, and show measurement of UV···UV super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field
- …