34 research outputs found

    Local origins of volume fraction fluctuations in dense granular materials

    Full text link
    Fluctuations of the local volume fraction within granular materials have previously been observed to decrease as the system approaches jamming. We experimentally examine the role of boundary conditions and inter-particle friction μ\mu on this relationship for a dense granular material of bidisperse particles driven under either constant volume or constant pressure. Using a radical Vorono\"i tessellation, we find the variance of the local volume fraction ϕ\phi monotonically decreases as the system becomes more dense, independent of boundary condition and μ\mu. We examine the universality and origins of this trend using experiments and the recent granocentric model \cite{Clusel-2009-GMR,Corwin-2010-MRP}, modified to draw particle locations from an arbitrary distribution P(s){\cal P}(s) of neighbor distances ss. The mean and variance of the observed P(s){\cal P}(s) are described by a single length scale controlled by ϕˉ\bar \phi. Through the granocentric model, we observe that diverse functional forms of P(s){\cal P}(s) all produce the trend of decreasing fluctuations, but only the experimentally-observed P(s){\cal P}(s) provides quantitative agreement with the measured ϕ\phi fluctuations. Thus, we find that both P(s){\cal P}(s) and P(ϕ){\cal P}(\phi) encode similar information about the ensemble of observed packings, and are connected to each other by the local granocentric model

    Using technology to create partnerships among school libraries and public libraries

    Get PDF
    The purpose of this study was to show the benefits of collaboration between school libraries and public libraries with a focus upon how technology was a catalyst in creating those partnerships. Through case study methodology, two elementary schools which are recipients of a wide area network though the public library were examined. The development of the network, the public library\u27s role, and the school staff\u27s perceptions of the service which provides Internet and database access were examined. Advantages such as positive outreach from the public library to an underserved public and provision of otherwise cost-prohibitive databases and electronic reference sources to the schools were included in the major findings of the study

    Evolution of Network Architecture in a Granular Material Under Compression

    Full text link
    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup

    Equilibrating temperature-like variables in jammed granular subsystems

    Full text link
    Although jammed granular systems are athermal, several thermodynamic-like descriptions have been proposed which make quantitative predictions about the distribution of volume and stress within a system and provide a corresponding temperature-like variable. We perform experiments with an apparatus designed to generate a large number of independent, jammed, two-dimensional configurations. Each configuration consists of a single layer of photoelastic disks supported by a gentle layer of air. New configurations are generated by alternately dilating and re-compacting the system through a series of boundary displacements. Within each configuration, a bath of particles surrounds a smaller subsystem of particles with a different inter-particle friction coefficient than the bath. The use of photoelastic particles permits us to find all particle positions as well as the vector forces at each inter-particle contact. By comparing the temperature-like quantities in both systems, we find compactivity (conjugate to the volume) does not equilibrate between the systems, while the angoricity (conjugate to the stress) does. Both independent components of the angoricity are linearly dependent on the hydrostatic pressure, in agreement with predictions of the stress ensemble

    Photoelastic force measurements in granular materials

    Full text link
    Photoelastic techniques are used to make both qualitative and quantitative measurements of the forces within idealized granular materials. The method is based on placing a birefringent granular material between a pair of polarizing filters, so that each region of the material rotates the polarization of light according to the amount of local of stress. In this review paper, we summarize past work using the technique, describe the optics underlying the technique, and illustrate how it can be used to quantitatively determine the vector contact forces between particles in a 2D granular system. We provide a description of software resources available to perform this task, as well as key techniques and resources for building an experimental apparatus

    Reflection and Remembrance: Oral histories and critical thinking

    Get PDF
    The research assignment for this class was to interview someone who lived through World War II. The interviewee could be someone who served in the military service, someone on the home front or even a child-anyone who was touched by the experience of World War II

    Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.

    Get PDF
    Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI

    An Exploration of the Mission and Vision for Academic Affairs and Learning Initiatives (AALI) at UD

    No full text
    What is Academic Affairs and Learning Initiatives (AALI) at UD? During this 50-minute session, AALI directors will share the collective vision and mission behind this important unit under the Office of the Provost which includes Offices and Directors of Academic Technology and Curricular Innovation, Assessment and Student-Centered Analytics, Career Services, the Common Academic Program, the Center for Online Learning, Faculty Career Enhancement, Office of Experiential Learning, Office of Learning Resources, Military and Veteran Programs and Services, Professional Learning and Space Development, Student Success Strategies and Operations, University Advising Initiatives & Student Success, the University Honors Program, and the Women\u27s Center. AALI representatives will share highlights from their important work supporting faculty, staff, and student success at the University, followed by a discussion with participants on ways this unit can provide additional support to various areas on campus
    corecore