2 research outputs found

    Emery-Dreifuss muscular dystrophy Type 1 is associated with a high risk of malignant ventricular arrhythmias and end-stage heart failure

    Get PDF
    BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterise the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidence in male and female variant-carriers was determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared to consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers (mean [SD] ages 33.4 [13.3] and 43.3 [16.8] years, respectively). Nine (23.6%) males developed MVA and five (13.2%) developed ESHF during a median [IQR] follow-up of 65.0 [24.3, 109.5] months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median [IQR] age of 58.6 [53.2, 60.4] years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank p = 0.49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank p = 0.09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease

    Clin Genet

    No full text
    Dilated cardiomyopathy (DCM) is a heart disease characterized by left ventricular dilatation and systolic dysfunction. In 30% of cases, pathogenic variants, essentially private to each patient, are identified in at least one of almost 50 reported genes. Thus, while costly, exons capture-based Next Generation Sequencing (NGS) of a targeted gene panel appears as the best strategy to genetically diagnose DCM. Here, we report a NGS strategy applied to pools of 8 DNAs from DCM patients and validate its robustness for rare variants detection at 4-fold reduced cost. Our pipeline uses Freebayes to detect variants with the expected 1/16 allele frequency. From the whole set of detected rare variants in 96 pools we set the variants quality parameters optimizing true positives calling. When compared to simplex DNA sequencing in a shared subset of 50 DNAs, 96% of SNVs/InsDel were accurately identified in pools. Extended to the 384 DNAs included in the study, we detected 100 variants (ACMG class 4 and 5), mostly in well-known morbid gene causing DCM such as TTN, MYH7, FLNC, and TNNT2. To conclude, we report an original pool-sequencing NGS method accurately detecting rare variants. This innovative approach is cost-effective for genetic diagnostic in rare diseases
    corecore