11 research outputs found

    The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders

    No full text
    Curcumin is the primary polyphenol in turmeric’s curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin’s bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin

    IN VITRO ANTIOXIDANT ACTIVITY OF IPOEMA BILOBA

    No full text

    Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System

    No full text
    Essential oils (EOs) have been traditionally used as ancient remedies to treat many health disorders due to their enormous biological activities. As mainstream allopathic medication currently used for CNS disorders is associated with adverse effects, the search to obtain safer alternatives as compared to the currently marketed therapies is of tremendous significance. Research conducted suggests that concurrent utilization of allopathic medicines and EOs is synergistically beneficial. Due to their inability to show untoward effects, various scientists have tried to elucidate the pharmacological mechanisms by which these oils exert beneficial effects on the CNS. In this regard, our review aims to improve the understanding of EOs’ biological activity on the CNS and to highlight the significance of the utilization of EOs in neuronal disorders, thereby improving patient acceptability of EOs as therapeutic agents. Through data compilation from library searches and electronic databases such as PubMed, Google Scholar, etc., recent preclinical and clinical data, routes of administration, and the required or maximal dosage for the observation of beneficial effects are addressed. We have also highlighted the challenges that require attention for further improving patient compliance, research gaps, and the development of EO-based nanomedicine for targeted therapy and pharmacotherapy

    The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders

    No full text
    Curcumin is the primary polyphenol in turmeric’s curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin’s bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin

    Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management

    No full text
    Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review

    Phytochemical Profiling and Bio-Potentiality of Genus Scutellaria: Biomedical Approach

    No full text
    Scutellaria (Lamiaceae) comprises over 360 species. Based on its morphological structure of calyx, also known as Skullcap, it is herbaceous by habit and cosmopolitan by habitat. The species of Scutellaria are widely used in local communities as a natural remedy. The genus contributed over three hundred bioactive compounds mainly represented by flavonoids and phenols, chemical ingredients which serve as potential candidates for the therapy of various biological activities. Thus, the current review is an attempt to highlight the biological significance and its correlation to various isolated bioactive ingredients including flavonoids, terpenoids, phenols, alkaloids, and steroids. However, flavonoids were the dominant group observed. The findings of the Scutellaria reveal that due to its affluent basis of numerous chemical ingredients it has a diverse range of pharmacological potentials, such as antimicrobial, antioxidant, antifeedant, enzyme inhibition, anti-inflammatory, and analgesic significance. Currently, various bioactive ingredients have been investigated for various biological activities from the genus Scutellaria in vitro and in vivo. Furthermore, these data help us to highlight its biomedical application and to isolate the responsible compounds to produce innovative medications as an alternative to synthetic drugs

    Heterocyclic Compounds as Dipeptidyl Peptidase-IV Inhibitors with Special Emphasis on Oxadiazoles as Potent Anti-Diabetic Agents

    No full text
    Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, β-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity

    Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2

    No full text
    The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity

    Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein

    No full text
    P-glycoprotein (P-gp) is a major factor in the multidrug resistance phenotype in cancer cells. P-gp is a protein that regulates the ATP-dependent efflux of a wide range of anticancer medicines and confers resistance. Due to its wide specificity, several attempts have been made to block the action of P-gp to restore the efficacy of anticancer drugs. The major goal has been to create molecules that either compete with anticancer medicines for transport or function as a direct P-gp inhibitor. Despite significant in vitro success, there are presently no drugs available in the clinic that can “block” P-gp–mediated resistance. Toxicity, unfavourable pharmacological interactions, and a variety of pharmacokinetic difficulties might all be the reason for the failure. On the other hand, P-gp has a significant effect in the body. It protects the vital organs from the entry of foreign bodies and other toxic chemicals. Hence, the inhibitors of P-gp should not hinder its action in the normal cells. To develop an effective inhibitor of P-gp, thorough background knowledge is needed in this field. The main aim of this review article was to set forth the merits and demerits of the action of P-gp on cancer cells as well as on normal cells. The influence of P-gp on cancer drug delivery and the contribution of P-gp to activating drug resistance were also mentioned

    Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach

    No full text
    A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood–brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach
    corecore