162 research outputs found

    Atorvastatin combined to interferon to verify the efficacy (ACTIVE) in relapsing-remitting active multiple sclerosis patients: a longitudinal controlled trial of combination therapy.

    Get PDF
    A large body of evidence suggests that, besides their cholesterol-lowering effect, statins exert anti-inflammatory action. Consequently, statins may have therapeutic potential in immune-mediated disorders such as multiple sclerosis. Our objectives were to determine safety, tolerability and efficacy of low-dose atorvastatin plus high-dose interferon beta-1a in multiple sclerosis patients responding poorly to interferon beta-1a alone. Relapsing–remitting multiple sclerosis patients, aged 18–50 years, with contrast-enhanced lesions or relapses while on therapy with interferon beta-1a 44 mg (three times weekly) for 12 months, were randomized to combination therapy (interferon+atorvastatin 20mg per day; group A) or interferon alone (group B) for 24 months. Patients underwent blood analysis and clinical assessment with the Expanded Disability Status Scale every 3 months, and brain gadolinium-enhanced magnetic resonance imaging at screening, and 12 and 24 months thereafter. Primary outcome measure was contrast-enhanced lesion number. Secondary outcome measures were number of relapses, EDSS variation and safety laboratory data. Forty-five patients were randomized to group A (n 1⁄4 21) or B (n 1⁄4 24). At 24 months, group A had significantly fewer contrast-enhanced lesions versus baseline (p 1⁄4 0.007) and significantly fewer relapses versus the two pre-randomization years (p < 0.001). At survival analysis, the risk for a 1-point EDSS increase was slightly higher in group B than in group A (p 1⁄4 0.053). Low-dose atorvastatin may be beneficial, as add-on therapy, in poor responders to high-dose interferon beta-1a alone

    A voxel-based morphometry study of disease severity correlates in relapsing–remitting multiple sclerosis

    Get PDF
    Previous studies have shown a preferential loss of grey matter in fronto-temporal regions in patients with multiple sclerosis. Studies of correlates of disease severity are more controversial, because some studies have suggested an association between sensorimotor cortex atrophy and Expanded Disability Status Scale score, while others did not find such a correlation. The objective of this study was to assess the correlation of regional loss of grey matter and white matter with indexes of clinical and radiological severity in relapsing–remitting multiple sclerosis, including the Expanded Disability Status Scale and lesion load. Correlations between Expanded Disability Status Scale, lesion load and disease duration were assessed in 128 patients with relapsing–remitting multiple sclerosis (Expanded Disability Status Scale range 1.0–6.0) using optimized voxel-based morphometry. Bilateral loss of grey matter in sensorimotor cortices was correlated with Expanded Disability Status Scale, and tissue loss also involved adjacent white matter, extending along pyramidal tracts to the brainstem. Increasing lesion load was correlated with loss of deep grey matter and white matter. No specific region of grey matter or white matter showed a significant correlation with disease duration. These findings support the hypothesis that motor neuron involvement plays a major role in the progression of physical disability. Lesion load accrual affects mainly highly interconnected subcortical structures, while disease duration has a less significant impact on brain atrophy, probably owing to the inter-subject heterogeneity of the clinical course of the disease

    Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback

    Get PDF
    BACKGROUND: The neurobiological underpinnings of avolition in schizophrenia remain unclear. Most brain imaging research has focused on reward prediction deficit and on ventral striatum dysfunction, but findings are not consistent. In the light of accumulating evidence that both ventral striatum and dorsal caudate play a key role in motivation, we investigated ventral striatum and dorsal caudate activation during processing of reward or loss in patients with schizophrenia. METHOD: We used functional magnetic resonance imaging to study brain activation during a Monetary Incentive Delay task in patients with schizophrenia, treated with second-generation antipsychotics only, and in healthy controls (HC). We also assessed the relationships of ventral striatum and dorsal caudate activation with measures of hedonic experience and motivation. RESULTS: The whole patient group had lower motivation but comparable hedonic experience and striatal activation than HC. Patients with high avolition scores showed lower dorsal caudate activation than both HC and patients with low avolition scores. A lower dorsal caudate activation was also observed in patients with deficit schizophrenia compared to HC and patients with non-deficit schizophrenia. Dorsal caudate activity during reward anticipation was significantly associated with avolition, but not with anhedonia in the patient group. CONCLUSIONS: These findings suggest that avolition in schizophrenia is linked to dorsal caudate hypoactivation

    Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men

    Get PDF
    Background and aims: Incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are affected early on in the pathogenesis of metabolic syndrome and type 2 diabetes. Epidemiologic studies consistently link high fructose consumption to insulin resistance but whether fructose consumption impairs the incretin response remains unknown. Methods and results: As many as 66 obese (BMI 26-40 kg/m(2)) male subjects consumed fructose-sweetened beverages containing 75 g fructose/day for 12 weeks while continuing their usual lifestyle. Glucose, insulin, GLP-1 and GIP were measured during oral glucose tolerance test (OGTT) and triglycerides (TG), GLP-1, GIP and PYY during a mixed meal test before and after fructose intervention. Fructose intervention did not worsen glucose and insulin responses during OGTT, and GLP-1 and GIP responses during OGTT and fat-rich meal were unchanged. Postprandial TG response increased significantly, p = 0.004, and we observed small but significant increases in weight and liver fat content, but not in visceral or subcutaneous fat depots. However, even the subgroups who gained weight or liver fat during fructose intervention did not worsen their glucose, insulin, GLP-1 or PYY responses. A minor increase in GIP response during OGTT occurred in subjects who gained liver fat (p = 0.049). Conclusion: In obese males with features of metabolic syndrome, 12 weeks fructose intervention 75 g/day did not change glucose, insulin, GLP-1 or GIP responses during OGTT or GLP-1, GIP or PYY responses during a mixed meal. Therefore, fructose intake, even accompanied with mild weight gain, increases in liver fat and worsening of postprandial TG profile, does not impair glucose tolerance or gut incretin response to oral glucose or mixed meal challenge. (C) 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.Peer reviewe

    Brain atrophy and lesion load in a large population of patients with multiple sclerosis

    Get PDF
    OBJECTIVE: To measure white matter (WM) and gray matter (GM) atrophy and lesion load in a large population of patients with multiple sclerosis (MS) using a fully automated, operator-independent, multiparametric segmentation method. METHODS: The study population consisted of 597 patients with MS and 104 control subjects. The MRI parameters were abnormal WM fraction (AWM-f), global WM-f (gWM-f), and GM fraction (GM-f). RESULTS: Significant differences between patients with MS and control subjects included higher AWM-f and reduced gWM-f and GM-f. MRI data showed significant differences between patients with relapsing-remitting and secondary progressive forms of MS. Significant correlations between MRI parameters and between MRI and clinical data were found. CONCLUSIONS: Patients with multiple sclerosis have significant atrophy of both white matter (WM) and gray matter (GM); secondary progressive patients have significantly more atrophy of both WM and GM than do relapsing-remitting patients and a significantly higher lesion load (abnormal WM fraction); lesion load is related to both WM and even more to GM atrophy; lesion load and WM and GM atrophy are significantly related to Expanded Disability Status Scale score and age at onset (suggesting that the younger the age at disease onset, the worse the lesion load and brain atrophy); and GM atrophy is the most significant MRI variable in determining the final disabilit

    Internalization Dissociates ÎČ2-Adrenergic Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that ÎČ2-adrenergic receptors (ÎČ2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of ÎČ2ARs between subcellular compartments. BRET between ÎČ2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between ÎČ2ARs and endosome markers increases. Energy transfer between ÎČ2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled ÎČ2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that ÎČ2ARs associate transiently with each other in the plasma membrane, or that ÎČ2AR dimers or oligomers are actively disrupted during internalization

    The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis

    Get PDF
    VEGF-A activity is tightly regulated by ligand and receptor availability. Here we investigate the physiological function of heterodimers between VEGF receptor-1 (VEGFR-1; Flt-1) and VEGFR-2 (KDR; Flk-1) (VEGFR(1-2)) in endothelial cells with a synthetic ligand that binds specifically to VEGFR(1-2). The dimeric ligand comprises one VEGFR-2-specific monomer (VEGF-E) and a VEGFR-1-specific monomer (PlGF-1). Here we show that VEGFR(1-2) activation mediates VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube formation and vasorelaxation via the nitric oxide pathway. VEGFR(1-2) activation does not mediate proliferation or elicit endothelial tissue factor production, confirming that these functions are controlled by VEGFR-2 homodimers. We further demonstrate that activation of VEGFR(1-2) inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 MAP kinase and mobilization of intracellular calcium from primary endothelial cells. These findings indicate that VEGFR-1 subunits modulate VEGF activity predominantly by forming heterodimer receptors with VEGFR-2 subunits and such heterodimers regulate endothelial cell homeostasis

    Magnetic resonance imaging of brain angiogenesis after stroke

    Get PDF
    Stroke is a major cause of mortality and long-term disability worldwide. The initial changes in local perfusion and tissue status underlying loss of brain function are increasingly investigated with noninvasive imaging methods. In addition, there is a growing interest in imaging of processes that contribute to post-stroke recovery. In this review, we discuss the application of magnetic resonance imaging (MRI) to assess the formation of new vessels by angiogenesis, which is hypothesized to participate in brain plasticity and functional recovery after stroke. The excellent soft tissue contrast, high spatial and temporal resolution, and versatility render MRI particularly suitable to monitor the dynamic processes involved in vascular remodeling after stroke. Here we review recent advances in the field of MR imaging that are aimed at assessment of tissue perfusion and microvascular characteristics, including cerebral blood flow and volume, vascular density, size and integrity. The potential of MRI to noninvasively monitor the evolution of post-ischemic angiogenic processes is demonstrated from a variety of in vivo studies in experimental stroke models. Finally, we discuss some pitfalls and limitations that may critically affect the accuracy and interpretation of MRI-based measures of (neo)vascularization after stroke

    Gray matter imaging in multiple sclerosis: what have we learned?

    Get PDF
    At the early onset of the 20th century, several studies already reported that the gray matter was implicated in the histopathology of multiple sclerosis (MS). However, as white matter pathology long received predominant attention in this disease, and histological staining techniques for detecting myelin in the gray matter were suboptimal, it was not until the beginning of the 21st century that the true extent and importance of gray matter pathology in MS was finally recognized. Gray matter damage was shown to be frequent and extensive, and more pronounced in the progressive disease phases. Several studies subsequently demonstrated that the histopathology of gray matter lesions differs from that of white matter lesions. Unfortunately, imaging of pathology in gray matter structures proved to be difficult, especially when using conventional magnetic resonance imaging (MRI) techniques. However, with the recent introduction of several more advanced MRI techniques, the detection of cortical and subcortical damage in MS has considerably improved. This has important consequences for studying the clinical correlates of gray matter damage. In this review, we provide an overview of what has been learned about imaging of gray matter damage in MS, and offer a brief perspective with regards to future developments in this field
    • 

    corecore