56 research outputs found

    An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions.

    Get PDF
    Hereditary sensory neuropathy type 1 (HSN1) is caused by mutations in the SPTLC1 or SPTLC2 sub-units of the enzyme serine palmitoyltransferase, resulting in the production of toxic 1-deoxysphingolipid bases (DSBs). We used induced pluripotent stem cells (iPSCs) from patients with HSN1 to determine whether endogenous DSBs are neurotoxic, patho-mechanisms of toxicity and response to therapy. HSN1 iPSC-derived sensory neurons (iPSCdSNs) endogenously produce neurotoxic DSBs. Complex gangliosides, which are essential for membrane micro-domains and signaling, are reduced, and neurotrophin signaling is impaired, resulting in reduced neurite outgrowth. In HSN1 myelinating cocultures, we find a major disruption of nodal complex proteins after 8 weeks, which leads to complete myelin breakdown after 6 months. HSN1 iPSC models have, therefore, revealed that SPTLC1 mutation alters lipid metabolism, impairs the formation of complex gangliosides, and reduces axon and myelin stability. Many of these changes are prevented by l-serine supplementation, supporting its use as a rational therapy

    Fetal gene therapy for neurodegenerative disease of infants

    Get PDF
    For inherited genetic diseases, fetal gene therapy offers the potential of prophylaxis against early, irreversible and lethal pathological change. To explore this, we studied neuronopathic Gaucher disease (nGD), caused by mutations in GBA. In adult patients, the milder form presents with hepatomegaly, splenomegaly and occasional lung and bone disease; this is managed, symptomatically, by enzyme replacement therapy. The acute childhood lethal form of nGD is untreatable since enzyme cannot cross the blood-brain barrier. Patients with nGD exhibit signs consistent with hindbrain neurodegeneration, including neck hyperextension, strabismus and, often, fatal apnea1. We selected a mouse model of nGD carrying a loxP-flanked neomycin disruption of Gba plus Cre recombinase regulated by the keratinocyte-specific K14 promoter. Exclusive skin expression of Gba prevents fatal neonatal dehydration. Instead, mice develop fatal neurodegeneration within 15 days2. Using this model, fetal intracranial injection of adeno-associated virus (AAV) vector reconstituted neuronal glucocerebrosidase expression. Mice lived for up to at least 18 weeks, were fertile and fully mobile. Neurodegeneration was abolished and neuroinflammation ameliorated. Neonatal intervention also rescued mice but less effectively. As the next step to clinical translation, we also demonstrated the feasibility of ultrasound-guided global AAV gene transfer to fetal macaque brains

    Treatment of upper aerodigestive tract cancers in England and its effect on survival

    Get PDF
    The evidence base for head and neck cancers is low with relatively few randomized controlled trials of the two main treatments, surgery and radiotherapy. The aim of the study was to investigate the patterns of surgery and radiotherapy treatment for head and neck cancers in three large areas of England and to investigate their effects on survival. This was a retrospective study of 13 510 cases of head and neck cancers (ICD10: C00–C14, C30–C32) diagnosed and treated from 1984 to 1992 in England. We undertook multivariate analyses of survival using a step-wise Cox proportional hazard model and Kaplan–Meier analysis. There were regional variations in the treatments given to patients. Four in ten patients did not receive currently recommended treatments. In multivariate analyses treatment content and timing had an independent effect on survival. Better survival was associated with surgery for mouth cancers, radiotherapy for laryngeal cancers and combined treatment for pharyngeal cancers independent of tumour and demographic factors. Further research is needed to investigate the findings of this study through large randomized controlled trials and multi-centre audits. © 1999 Cancer Research Campaig

    N-butyldeoxynojirimycin causes weight loss as a result of appetite suppression in lean and obese mice.

    No full text
    AIM: To determine the mechanism of weight loss caused by high doses of N-butyldeoxynojirimycin (NB-DNJ) in healthy lean and leptin-deficient obese (ob/ob) mice. METHODS: Healthy lean and obese mice were treated with NB-DNJ by the following methods: admixed with their diet, delivered by subcutaneously implanted mini-pumps or by intraperitoneal or intracerebroventricular (ICV) injection. Daily changes in body weight and food intake were recorded during the experimental period. The effect of NB-DNJ treatment on subcutaneous adipose tissue and on epididymal fat pads was measured. RESULTS: Lean mice treated with NB-DNJ, admixed with their diet, lost weight in the form of adipose tissue. This resulted in a 40% reduction in skin thickness (control, 358 +/- 11 microm; NB-DNJ treated 203 +/- 6 microm) and a reduction in epididymal fat pad weights after 5 weeks of treatment at 2400 mg/kg/day (control, 0.0154 +/- 0.001; NB-DNJ treated, 0.0026 +/- 0.0005 as ratios of fat pad weight to total body weight). Following the depletion of adipose tissue mass, the mice grew normally and did not have any reduction in lean mass. Obese mice treated with NB-DNJ also lost weight or gained weight at a greatly reduced rate compared with non-treated controls. Body weights at 6 months of age were: lean control, 29.10 +/- 1.15 g; lean NB-DNJ treated, 22.73 +/- 0.29 g; obese control, 63.25 +/- 1.5 g; obese NB-DNJ treated from 5 weeks of age, 35.30 +/- 1.68 g; obese NB-DNJ treated from 12 weeks of age, 38.84 +/- 1.26 g. Both the lean and obese groups of mice treated with NB-DNJ ate up to 30% less than untreated controls. Daily food intake (powder diet) were: lean control, 4.15 +/- 0.54 g; obese control, 4.14 +/- 0.2 g; lean NB-DNJ treated 2.9 +/- 0.37 g; obese NB-DNJ treated, 2.88 +/- 0.47 g. Mice treated with the N-substituted galactose imino sugar analogue, N-butyldeoxygalactonojirimycin (NB-DGJ) did not lose weight. Mice experienced similar weight loss or lack of weight gain when fed a restricted diet that mimics the drug-induced level of food consumption. Delivery of 2 nmol NB-DNJ by ICV injection into lean mice also caused similar reductions in food intake. Food intake: saline vehicle, 4.30 +/- 0.12 g; NB-DNJ, 3.37 +/- 0.19 g; NB-DGJ, 4.03 +/- 0.16 g; 2-deoxyglucose, 4.7 +/- 0.15 g. CONCLUSION: NB-DNJ causes weight loss as a result of reduced food consumption due to central appetite suppression

    Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice.

    No full text
    The apolipoprotein E gene knockout (apoE-/-) mouse develops atherosclerosis that shares many features of human atherosclerosis. Increased levels of glycosphingolipid (GSL) have been reported in human atherosclerotic lesions; however, GSL levels have not been studied in the apoE-/- mouse. Here we used HPLC methods to analyze serum and aortic GSL levels in apoE-/- and C57BL/6J control mice. The concentrations of glucosyl ceramide (GlcCer), lactosyl ceramide (LacCer), GalNAcbeta1-4Galbeta1-4Glc-Cer (GA2), and ceramide trihexoside (CTH) were increased by approximately 7-fold in the apoE-/- mouse serum compared with controls. The major serum ganglioside, N-glycolyl GalNAcbeta1-4[NeuNAcalpha2-3]Galbeta1-4Glc-Cer (N-glycolyl GM2), was increased in concentration by approximately 3-fold. A redistribution of GSLs from HDL to VLDL populations was also observed in the apoE-/- mice. These changes were accompanied by an increase in the levels of GSLs in the aortic sinus and arch of the apoE-/- mice. The spectrum of gangliosides present in the aortic tissues was more complex than that found in the lipoproteins, with the latter represented almost entirely by N-glycolyl GM2 and the former comprised of NeuNAcalpha2-3Galbeta1-4Glc-Cer (GM3), GM2, N-glycolyl GM2, GM1, GD3, and GD1a. In conclusion, neutral GSL and ganglioside levels were increased in the serum and aortae of apoE-/- mice compared with controls, and this was associated with a preferential redistribution of GSL to the proatherogenic lipoprotein populations. The apoE-/- mouse therefore represents a useful model to study the potential role of GSL metabolism in atherogenesis

    Fetal gene therapy for neurodegenerative disease of infants

    No full text
    For inherited genetic diseases, fetal gene therapy offers the potential of prophylaxis against early, irreversible and lethal pathological change. To explore this, we studied neuronopathic Gaucher disease (nGD), caused by mutations in GBA. In adult patients, the milder form presents with hepatomegaly, splenomegaly and occasional lung and bone disease; this is managed, symptomatically, by enzyme replacement therapy. The acute childhood lethal form of nGD is untreatable since enzyme cannot cross the blood–brain barrier. Patients with nGD exhibit signs consistent with hindbrain neurodegeneration, including neck hyperextension, strabismus and, often, fatal apnea1. We selected a mouse model of nGD carrying a loxP-flanked neomycin disruption of Gba plus Cre recombinase regulated by the keratinocyte-specific K14 promoter. Exclusive skin expression of Gba prevents fatal neonatal dehydration. Instead, mice develop fatal neurodegeneration within 15 days2. Using this model, fetal intracranial injection of adeno-associated virus (AAV) vector reconstituted neuronal glucocerebrosidase expression. Mice lived for up to at least 18 weeks, were fertile and fully mobile. Neurodegeneration was abolished and neuroinflammation ameliorated. Neonatal intervention also rescued mice but less effectively. As the next step to clinical translation, we also demonstrated the feasibility of ultrasound-guided global AAV gene transfer to fetal macaque brains

    A novel mouse model of a patient mucolipidosis II mutation recapitulates disease pathology.

    No full text
    Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene knock-out mouse model of MLII lacks some of the characteristic features of the human disease, our novel mouse model more fully recapitulates the human pathology, showing growth retardation, skeletal and facial abnormalities, increased circulating lysosomal enzymatic activities, intracellular lysosomal storage, and reduced life span. Importantly, MLII behavioral deficits are characterized for the first time, including impaired motor function and psychomotor retardation. Histological analysis of the brain revealed progressive neurodegeneration in the cerebellum with severe Purkinje cell loss as the underlying cause of the ataxic gait. In addition, based on the loss of Npc2 (Niemann-Pick type C 2) protein expression in the brain, the mice were treated with 2-hydroxypropyl-β-cyclodextrin, a drug previously reported to rescue Purkinje cell death in a mouse model of Niemann-Pick type C disease. No improvement in brain pathology was observed. This indicates that cerebellar degeneration is not primarily triggered by loss of Npc2 function. This study emphasizes the value of modeling MLII patient mutations to generate clinically relevant mouse mutants to elucidate the pathogenic molecular pathways of MLII and address their amenability to therapy
    • …
    corecore