13 research outputs found

    Gender Differences in Pro-Environmental Behavior Intentions

    Get PDF
    Previous research has found gender differences in pro-environmental behavior (PEB) performance. Women typically score higher on environmental concern and show stronger inclination to engage in private or domestic PEBs (Tindall et al., 2003) and Allen et al. (2015) found that women are more likely to engage in efficiency upgrade PEBs. However, men show higher prevalence towards performing public PEB (Hunter et al., 2004). The present study recruited 313 Mturk participants. They were randomly assigned to one of six different norm levels. After exposure to a norm level, the experimental groups were provided the opportunity to perform the PEB. Participants then completed measures of environmental attitudes and were asked questions relating to their intention to partake in a list of PEBs in the coming six months. These related to efficiency upgrades, political PEB, home PEB, and travel PEB. We hypothesized that women would be more likely to engage in PEBs relating to home, travel, and efficiency upgrades when compared to men; and that men will be more likely to engage in political PEBs. Results yielded women scoring significantly higher on intention to engage in home PEBs (p \u3c .001) and travel PEBs (p = .016), but no significant difference was found for efficiency upgrades (p = .972) or political PEBs (p = .898). Knowing the tendencies and intentions behind different genders’ PEB performance allows us the opportunity to intervene based on both genders. While recognizing the nature of engagement on specific PEB, we can efficiently promote specific PEB engagement within groups

    Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria.

    Get PDF
    UnlabelledElectronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria.Key messageAcute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV

    Phage Encoded H-NS: A Potential Achilles Heel in the Bacterial Defence System

    Get PDF
    The relationship between phage and their microbial hosts is difficult to elucidate in complex natural ecosystems. Engineered systems performing enhanced biological phosphorus removal (EBPR), offer stable, lower complexity communities for studying phage-host interactions. Here, metagenomic data from an EBPR reactor dominated by Candidatus Accumulibacter phosphatis (CAP), led to the recovery of three complete and six partial phage genomes. Heat-stable nucleoid structuring (H-NS) protein, a global transcriptional repressor in bacteria, was identified in one of the complete phage genomes (EPV1), and was most similar to a homolog in CAP. We infer that EPV1 is a CAP-specific phage and has the potential to repress up to 6% of host genes based on the presence of putative H-NS binding sites in the CAP genome. These genes include CRISPR associated proteins and a Type III restriction-modification system, which are key host defense mechanisms against phage infection. Further, EPV1 was the only member of the phage community found in an EBPR microbial metagenome collected seven months prior. We propose that EPV1 laterally acquired H-NS from CAP providing it with a means to reduce bacterial defenses, a selective advantage over other phage in the EBPR system. Phage encoded H-NS could constitute a previously unrecognized weapon in the phage-host arms race

    Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?

    Get PDF
    A wide variety of techniques have been developed to homogenize transport equations in multiscale and multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodologies via a simple example application describing a parabolic transport problem and, in so doing, compare their respective advantages/disadvantages from a practical point of view. This paper is also intended as a pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context, detail subtle points with great care, and reference many fundamental works

    Analysis of the contribution of MTP and the predicted Flp pilus genes to Mycobacterium tuberculosis pathogenesis

    Full text link
    Mycobacterium tuberculosis (Mtb) is one of the world's most successful pathogens. Millions of new cases of tuberculosis occur each year, emphasizing the need for better methods of treatment. The design of novel therapeutics is dependent on our understanding of factors that are essential for pathogenesis. Many bacterial pathogens use pili and other adhesins to mediate pathogenesis. The recently identified Mycobacterium tuberculosis pilus (MTP) and the hypothetical, widely conserved Flp pilus have been speculated to be important for Mtb virulence based on in vitro studies and homology to other pili, respectively. However, the roles for these pili during infection have yet to be tested. We addressed this gap in knowledge and found that neither MTP nor the hypothetical Flp pilus is required for Mtb survival in mouse models of infection, although MTP can contribute to biofilm formation and subsequent isoniazid tolerance. However, differences in mtp expression did affect lesion architecture in infected lungs. Deletion of mtp did not correlate with loss of cell-associated extracellular structures as visualized by transmission electron microscopy in Mtb Erdman and HN878 strains, suggesting that the phenotypes of the mtp mutants were not due to defects in production of extracellular structures. These findings highlight the importance of testing the virulence of adhesion mutants in animal models to assess the contribution of the adhesin to infection. This study also underscores the need for further investigation into additional strategies that Mtb may use to adhere to its host so that we may understand how this pathogen invades, colonizes and disseminates
    corecore