271 research outputs found
Reliable Quantum Computers
The new field of quantum error correction has developed spectacularly since
its origin less than two years ago. Encoded quantum information can be
protected from errors that arise due to uncontrolled interactions with the
environment. Recovery from errors can work effectively even if occasional
mistakes occur during the recovery procedure. Furthermore, encoded quantum
information can be processed without serious propagation of errors. Hence, an
arbitrarily long quantum computation can be performed reliably, provided that
the average probability of error per quantum gate is less than a certain
critical value, the accuracy threshold. A quantum computer storing about 10^6
qubits, with a probability of error per quantum gate of order 10^{-6}, would be
a formidable factoring engine. Even a smaller, less accurate quantum computer
would be able to perform many useful tasks. (This paper is based on a talk
presented at the ITP Conference on Quantum Coherence and Decoherence, 15-18
December 1996.)Comment: 24 pages, LaTeX, submitted to Proc. Roy. Soc. Lond. A, minor
correction
Quantum Computing in the NISQ era and beyond
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the
near future. Quantum computers with 50-100 qubits may be able to perform tasks
which surpass the capabilities of today's classical digital computers, but
noise in quantum gates will limit the size of quantum circuits that can be
executed reliably. NISQ devices will be useful tools for exploring many-body
quantum physics, and may have other useful applications, but the 100-qubit
quantum computer will not change the world right away --- we should regard it
as a significant step toward the more powerful quantum technologies of the
future. Quantum technologists should continue to strive for more accurate
quantum gates and, eventually, fully fault-tolerant quantum computing.Comment: 20 pages. Based on a Keynote Address at Quantum Computing for
Business, 5 December 2017. (v3) Formatted for publication in Quantum, minor
revision
Sufficient condition on noise correlations for scalable quantum computing
I study the effectiveness of fault-tolerant quantum computation against
correlated Hamiltonian noise, and derive a sufficient condition for
scalability. Arbitrarily long quantum computations can be executed reliably
provided that noise terms acting collectively on k system qubits are
sufficiently weak, and decay sufficiently rapidly with increasing k and with
increasing spatial separation of the qubits.Comment: 13 pages, 1 figure. (v2) Minor corrections and clarification
Fault-tolerant quantum computation
The discovery of quantum error correction has greatly improved the long-term
prospects for quantum computing technology. Encoded quantum information can be
protected from errors that arise due to uncontrolled interactions with the
environment, or due to imperfect implementations of quantum logical operations.
Recovery from errors can work effectively even if occasional mistakes occur
during the recovery procedure. Furthermore, encoded quantum information can be
processed without serious propagation of errors. In principle, an arbitrarily
long quantum computation can be performed reliably, provided that the average
probability of error per gate is less than a certain critical value, the
accuracy threshold. It may be possible to incorporate intrinsic fault tolerance
into the design of quantum computing hardware, perhaps by invoking topological
Aharonov-Bohm interactions to process quantum information.Comment: 58 pages with 7 PostScript figures, LaTeX, uses sprocl.sty and psfig,
to appear in "Introduction to Quantum Computation," edited by H.-K. Lo, S.
Popescu, and T. P. Spille
Quantum information and physics: Some future directions
I consider some promising future directions for quantum information theory that could influence the development of 21st century physics. Advances in the theory of the distinguishability of superoperators may lead to new strategies for improving the precision of quantum-limited measurements. A better grasp of the properties of multi-partite quantum entanglement may lead to deeper understanding of strongly-coupled dynamics in quantum many-body systems, quantum field theory, and quantum gravity
Simulating quantum field theory with a quantum computer
Forthcoming exascale digital computers will further advance our knowledge of
quantum chromodynamics, but formidable challenges will remain. In particular,
Euclidean Monte Carlo methods are not well suited for studying real-time
evolution in hadronic collisions, or the properties of hadronic matter at
nonzero temperature and chemical potential. Digital computers may never be able
to achieve accurate simulations of such phenomena in QCD and other
strongly-coupled field theories; quantum computers will do so eventually,
though I'm not sure when. Progress toward quantum simulation of quantum field
theory will require the collaborative efforts of quantumists and field
theorists, and though the physics payoff may still be far away, it's worthwhile
to get started now. Today's research can hasten the arrival of a new era in
which quantum simulation fuels rapid progress in fundamental physics.Comment: 22 pages, The 36th Annual International Symposium on Lattice Field
Theory - LATTICE201
Do Black Holes Destroy Information?
I review the information loss paradox that was first formulated by Hawking, and discuss possible ways of resolving it. All proposed solutions have serious drawbacks. I conclude that the information loss paradox may well presage a
revolution in fundamental physics
Semilocal Defects
I analyze the interplay of gauge and global symmetries in the theory of
topological defects. In a two-dimensional model in which both gauge symmetries
and {\it exact} global symmetries are spontaneously broken, stable vortices may
fail to exist even though magnetic flux is topologically conserved. Following
Vachaspati and Ach\'ucarro, I formulate the condition that must be satisfied by
the pattern of symmetry breakdown for finite-energy configurations to exist in
which the conserved magnetic flux is spread out instead of confined to a
localized vortex. If this condition is met, vortices are always unstable at
sufficiently weak gauge coupling. I also describe the properties of defects in
models with an ``accidental'' symmetry that is partially broken by gauge boson
exchange. In some cases, the spontaneously broken accidental symmetry is not
restored inside the core of the defect. Then the structure of the defect can be
analyzed using an effective field theory; the details of the physics
responsible for the spontaneous symmetry breakdown need not be considered.
Examples include ``semilocal'' domain walls and vortices that are classically
unstable, but are stabilized by loop corrections, and ``semilocal'' magnetic
monopoles that have an unusual core structure. Finally, I examine the general
theory of the ``electroweak strings'' that were recently discussed by
Vachaspati. These arise only in models with gauge boson ``mixing,'' and can
always end on magnetic monopoles. Cosmological implications are briefly
discussed.Comment: 41 pages, CALT-68-178
Quantum computing and the entanglement frontier - Rapporteur talk at the 25th Solvay Conference
Quantum information science explores the frontier of highly complex quantum states,
the "entanglement frontier". This study is motivated by the observation (widely believed
but unproven) that classical systems cannot simulate highly entangled quantum systems
efficiently, and we hope to hasten the day when well controlled quantum systems can
perform tasks surpassing what can be done in the classical world. One way to achieve
such "quantum supremacy" would be to run an algorithm on a quantum computer which
solves a problem with a super-polynomial speedup relative to classical computers, but
there may be other ways that can be achieved sooner, such as simulating exotic quantum
states of strongly correlated matter. To operate a large scale quantum computer reliably
we will need to overcome the debilitating effects of decoherence, which might be done
using "standard" quantum hardware protected by quantum error-correcting codes, or by
exploiting the nonabelian quantum statistics of anyons realized in solid state systems,
or by combining both methods. Only by challenging the entanglement frontier will we
learn whether Nature provides extravagant resources far beyond what the classical world
would allow
- …