2 research outputs found

    Detection of COPD’s auscultative symptoms using higher order statistics in the analysis of respiratory sounds

    No full text
    In this paper we present the method for determination of the specific auscultatory diagnostic signs in patients with chronic obstructive pulmonary disease (COPD), which is based upon the utilization of the polyspectral analysis and the calculation of higher order statistics. The main stages of the method are the calculation and construction of the bicoherence function of the lung sound signal in order to find its maximal value. The visual and numerical estimations of the obtained maximum allow us to conclude the presence or absence in this lung’s audio signal of the artifact, which indicates the pathology. For more accurate results one needs to determine asymmetry coefficient and to perform the estimation of bifrequency corresponding to the maximal value of the bicoherence coefficient. The calculation of skewness and kurtosis coefficients of cross-correlation functions of lung sound signals, which were recorded simultaneously in four channels, allows us to reduce the sensitivity of the method to noise components. Therefore, by analyzing all proposed calculated characteristics and parameters one can conclude the presence or absence of the pathology in this audio signal

    Detection of COPD’s auscultative symptoms using higher order statistics in the analysis of respiratory sounds

    No full text
    ΠŸΠΎΠ»Π½Ρ‹ΠΉ тСкст доступСн Π½Π° сайтС издания ΠΏΠΎ подпискС: http://radio.kpi.ua/article/view/S0021347016020059In this paper we present the method for determination of the specific auscultatory diagnostic signs in patients with chronic obstructive pulmonary disease (COPD), which is based upon the utilization of the polyspectral analysis and the calculation of higher order statistics. The main stages of the method are the calculation and construction of the bicoherence function of the lung sound signal in order to find its maximal value. The visual and numerical estimations of the obtained maximum allow us to conclude the presence or absence in this lung’s audio signal of the artifact, which indicates the pathology. For more accurate results one needs to determine asymmetry coefficient and to perform the estimation of bifrequency corresponding to the maximal value of the bicoherence coefficient. The calculation of skewness and kurtosis coefficients of cross-correlation functions of lung sound signals, which were recorded simultaneously in four channels, allows us to reduce the sensitivity of the method to noise components. Therefore, by analyzing all proposed calculated characteristics and parameters one can conclude the presence or absence of the pathology in this audio signal.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Π°ΡƒΡΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… диагностичСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π₯ΠžΠ‘Π›, основанный Π½Π° использовании ΠΏΠΎΠ»ΠΈΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ расчСта статистик Π²Ρ‹ΡΡˆΠ΅Π³ΠΎ порядка. Π­Ρ‚Π°ΠΏΠ°ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ расчСт ΠΈ построСниС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ бикогСрСнтности сигнала Π·Π²ΡƒΠΊΠ° дыхания для нахоТдСния Π΅Π΅ максимального значСния. Π’ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½Π°Ρ ΠΈ числСнная ΠΎΡ†Π΅Π½ΠΊΠ° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ максимума позволяСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ ΠΈΠ»ΠΈ отсутствии Π² Π΄Π°Π½Π½ΠΎΠΌ Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌ сигналС Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚Π°, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. Для Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ коэффициСнт асиммСтрии ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΡƒ бичастоты, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ коэффициСнта бикогСрСнтности. РасчСт коэффициСнтов асиммСтрии ΠΈ эксцСсса взаимокоррСляционных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ сигналов Π·Π²ΡƒΠΊΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ…, снятых синхронно Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΠΊΠ°Π½Π°Π»Π°Ρ…, позволяСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊ ΡˆΡƒΠΌΠΎΠ²Ρ‹ΠΌ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, анализируя всС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ рассчитанныС характСристики ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ ΠΈΠ»ΠΈ отсутствии Π² Π΄Π°Π½Π½ΠΎΠΌ Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌ сигналС ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ
    corecore