2 research outputs found
Detection of COPDβs auscultative symptoms using higher order statistics in the analysis of respiratory sounds
In this paper we present the method for determination of the specific auscultatory diagnostic signs in patients with chronic obstructive pulmonary disease (COPD), which is based upon the utilization of the polyspectral analysis and the calculation of higher order statistics. The main stages of the method are the calculation and construction of the bicoherence function of the lung sound signal in order to find its maximal value. The visual and numerical estimations of the obtained maximum allow us to conclude the presence or absence in this lungβs audio signal of the artifact, which indicates the pathology. For more accurate results one needs to determine asymmetry coefficient and to perform the estimation of bifrequency corresponding to the maximal value of the bicoherence coefficient. The calculation of skewness and kurtosis coefficients of cross-correlation functions of lung sound signals, which were recorded simultaneously in four channels, allows us to reduce the sensitivity of the method to noise components. Therefore, by analyzing all proposed calculated characteristics and parameters one can conclude the presence or absence of the pathology in this audio signal
Detection of COPDβs auscultative symptoms using higher order statistics in the analysis of respiratory sounds
ΠΠΎΠ»Π½ΡΠΉ ΡΠ΅ΠΊΡΡ Π΄ΠΎΡΡΡΠΏΠ΅Π½ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΠ·Π΄Π°Π½ΠΈΡ ΠΏΠΎ ΠΏΠΎΠ΄ΠΏΠΈΡΠΊΠ΅: http://radio.kpi.ua/article/view/S0021347016020059In this paper we present the method for determination of the specific auscultatory diagnostic signs in patients with chronic obstructive pulmonary disease (COPD), which is based upon the utilization of the polyspectral analysis and the calculation of higher order statistics. The main stages of the method are the calculation and construction of the bicoherence function of the lung sound signal in order to find its maximal value. The visual and numerical estimations of the obtained maximum allow us to conclude the presence or absence in this lungβs audio signal of the artifact, which indicates the pathology. For more accurate results one needs to determine asymmetry coefficient and to perform the estimation of bifrequency corresponding to the maximal value of the bicoherence coefficient. The calculation of skewness and kurtosis coefficients of cross-correlation functions of lung sound signals, which were recorded simultaneously in four channels, allows us to reduce the sensitivity of the method to noise components. Therefore, by analyzing all proposed calculated characteristics and parameters one can conclude the presence or absence of the pathology in this audio signal.ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
Π°ΡΡΠΊΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΡΡ
Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Π₯ΠΠΠ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΡΠ°ΡΡΠ΅ΡΠ° ΡΡΠ°ΡΠΈΡΡΠΈΠΊ Π²ΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°. ΠΡΠ°ΠΏΠ°ΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠ²Π»ΡΡΡΡΡ ΡΠ°ΡΡΠ΅Ρ ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΠΈΠΊΠΎΠ³Π΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ³Π½Π°Π»Π° Π·Π²ΡΠΊΠ° Π΄ΡΡ
Π°Π½ΠΈΡ Π΄Π»Ρ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΅Π΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΈΠ·ΡΠ°Π»ΡΠ½Π°Ρ ΠΈ ΡΠΈΡΠ»Π΅Π½Π½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΎ Π½Π°Π»ΠΈΡΠΈΠΈ ΠΈΠ»ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ Π·Π²ΡΠΊΠΎΠ²ΠΎΠΌ ΡΠΈΠ³Π½Π°Π»Π΅ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π°ΡΡΠ΅ΡΠ°ΠΊΡΠ°, ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΠΎ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠΠ»Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠΎΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π°ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΎΡΠ΅Π½ΠΊΡ Π±ΠΈΡΠ°ΡΡΠΎΡΡ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π±ΠΈΠΊΠΎΠ³Π΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ. Π Π°ΡΡΠ΅Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΡΠΊΡΡΠ΅ΡΡΠ° Π²Π·Π°ΠΈΠΌΠΎΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π·Π²ΡΠΊΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ
, ΡΠ½ΡΡΡΡ
ΡΠΈΠ½Ρ
ΡΠΎΠ½Π½ΠΎ Π² ΡΠ΅ΡΡΡΠ΅Ρ
ΠΊΠ°Π½Π°Π»Π°Ρ
, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊ ΡΡΠΌΠΎΠ²ΡΠΌ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΠΌ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΡ Π²ΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ½ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎ Π½Π°Π»ΠΈΡΠΈΠΈ ΠΈΠ»ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ Π·Π²ΡΠΊΠΎΠ²ΠΎΠΌ ΡΠΈΠ³Π½Π°Π»Π΅ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ