115 research outputs found

    Targeted Inhibition of CD133+ Cells in Oral Cancer Cell Lines

    Get PDF
    Resistance to treatment and the appearance of secondary tumors in head and neck squamous cell carcinomas (HNSCC) have been attributed to the presence of cells with stem-cell-like properties in the basal layer of the epithelium at the site of the lesion. In this study, we tested the hypothesis that these putative cancer stem cells (CSC) in HNSCC could be specifically targeted and inhibited. We found that 9 of 10 head and neck tumor biopsies contained a subpopulation of cells that expressed CD133, an unusual surface-exposed membrane-spanning glycoprotein associated with CSC. A genetically modified cytolethal distending toxin (Cdt), from the periodontal pathogen Aggregatibacter actinomycetemcomitans , was conjugated to an anti-human CD133 monoclonal antibody (MAb). The Cdt-MAb complex preferentially inhibited the proliferation of CD133+ cells in cultures of established cell lines derived from HNSCC. Inhibition of the CD133+ cells was rate- and dose-dependent. Saturation kinetics indicated that the response to the Cdt-MAb complex was specific. Healthy primary gingival epithelial cells that are native targets of the wild-type Cdt were not affected. Analysis of these data provides a foundation for the future development of new therapies to target CSC in the early treatment of HNSCC. Abbreviations: Cdt, cytolethal distending toxin; CSC, cancer stem cells; HNSCC, head and neck squamous cell carcinoma; MAb, monoclonal antibody. © 2011 International & American Associations for Dental Research

    Combined Effect of Dietary Cadmium and Benzo(a)pyrene on Metallothionein Induction and Apoptosis in the Liver and Kidneys of Bank Voles

    Get PDF
    Bank voles free living in a contaminated environment have been shown to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions. The objective of this study was to find out whether benzo(a)pyrene (BaP), a common environmental co-contaminant, increases Cd toxicity through inhibition of metallothionein (MT) synthesis—a low molecular weight protein that is considered to be primary intracellular component of the protective mechanism. For 6 weeks, the female bank voles were provided with diet containing Cd [less than 0.1 μg/g (control) and 60 μg/g dry wt.] and BaP (0, 5, and 10 μg/g dry wt.) alone or in combination. At the end of exposure period, apoptosis and analyses of MT, Cd, and zinc (Zn) in the liver and kidneys were carried out. Dietary BaP 5 μg/g did not affect but BaP 10 μg/g potentiated rather than inhibited induction of hepatic and renal MT by Cd, and diminished Cd-induced apoptosis in both organs. The hepatic and renal Zn followed a pattern similar to that of MT, attaining the highest level in the Cd + BaP 10-μg/g group. These data indicate that dietary BaP attenuates rather than exacerbates Cd toxicity in bank voles, probably by potentiating MT synthesis and increasing Zn concentration in the liver and kidneys

    Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape

    Get PDF
    Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Association between loop diuretic dose changes and outcomes in chronic heart failure: observations from the ESC-EORP Heart Failure Long-Term Registry

    Get PDF
    [Abstract] Aims. Guidelines recommend down-titration of loop diuretics (LD) once euvolaemia is achieved. In outpatients with heart failure (HF), we investigated LD dose changes in daily cardiology practice, agreement with guideline recommendations, predictors of successful LD down-titration and association between dose changes and outcomes. Methods and results. We included 8130 HF patients from the ESC-EORP Heart Failure Long-Term Registry. Among patients who had dose decreased, successful decrease was defined as the decrease not followed by death, HF hospitalization, New York Heart Association class deterioration, or subsequent increase in LD dose. Mean age was 66±13 years, 71% men, 62% HF with reduced ejection fraction, 19% HF with mid-range ejection fraction, 19% HF with preserved ejection fraction. Median [interquartile range (IQR)] LD dose was 40 (25–80) mg. LD dose was increased in 16%, decreased in 8.3% and unchanged in 76%. Median (IQR) follow-up was 372 (363–419) days. Diuretic dose increase (vs. no change) was associated with HF death [hazard ratio (HR) 1.53, 95% confidence interval (CI) 1.12–2.08; P = 0.008] and nominally with cardiovascular death (HR 1.25, 95% CI 0.96–1.63; P = 0.103). Decrease of diuretic dose (vs. no change) was associated with nominally lower HF (HR 0.59, 95% CI 0.33–1.07; P = 0.083) and cardiovascular mortality (HR 0.62 95% CI 0.38–1.00; P = 0.052). Among patients who had LD dose decreased, systolic blood pressure [odds ratio (OR) 1.11 per 10 mmHg increase, 95% CI 1.01–1.22; P = 0.032], and absence of (i) sleep apnoea (OR 0.24, 95% CI 0.09–0.69; P = 0.008), (ii) peripheral congestion (OR 0.48, 95% CI 0.29–0.80; P = 0.005), and (iii) moderate/severe mitral regurgitation (OR 0.57, 95% CI 0.37–0.87; P = 0.008) were independently associated with successful decrease. Conclusion. Diuretic dose was unchanged in 76% and decreased in 8.3% of outpatients with chronic HF. LD dose increase was associated with worse outcomes, while the LD dose decrease group showed a trend for better outcomes compared with the no-change group. Higher systolic blood pressure, and absence of (i) sleep apnoea, (ii) peripheral congestion, and (iii) moderate/severe mitral regurgitation were independently associated with successful dose decrease

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Shale gas hydrocarbon system-North American experience and European potential

    No full text
    The last two decades witnessed a significant progress in understanding unconventional hydrocarbon systems, exploration and developments in technology, which led to substantial increase of tight gas and shale gas production. This progress occurred mainly in USA, where unconventional gas production currently stands for ~~50 % of annual domestic gas production, and it is forecast to increase to more than 60 % in 2016. Recoverable shale gas resources of USA and Canada are estimated at present for at least ~20 trillion m3 (~~750 Tcf). Shale gas is a unique hydrocarbon system in which the same rock formation is a source rock, reservoir rock and seal (Figs. 2, 3). Gas field often appears continuous at a regional scale and does not requires hydrocarbon trap (Fig. 3). For development of shale gas, a high TOC contents (>1-2 %) is required for relatively thick formation (>30-70 m). High thermal maturity is essential for gas generation (>1.1-1.3 % Ro), and relatively low depth of burial (3500-4500 m) is necessary for commercial gas production. Gas is accumulated in isolated pores or adsorbed by organic matter (Fig. 5). Gas exploitation requires dense grid of wells with horizontal intervals and multiple fracturing. Shale gas is currently produced in several basins in USA and Canada. American success in unconventional gas production led to intensive shale gas and tight gas exploration across the world, with Europe being one of the priorities (Fig. 7). At the current stage, a couple of European sedimentary basins were selected as the major shale gas exploration targets. This includes predominantly the Lower Jurassic shale in the Lower Saxony Basin in Germany, the Alum shale in Scania (Southern Sweden), and to a lesser degree, the South-Eastern Basin in France with its Lower Jurassic and Lower to Upper Cretaceous shales, the Paris Basin in France with the Lower Jurassic shale, the Upper Jurassic shale in the Vienna Basin, the Lower Cretaceous Wealden shale in England, the Bodensee Trough in SW Germany with the Permian-Carboniferous shale, and the cenozoic Mako Trough in Hungary. In Europe the most intense exploration for shale gas is currently being carried out in Poland. The major target in that exploration is the Lower Palaeozoic shale at the East European Craton (Baltic and Lublin-Podlasie Basin), mainly the Upper Ordovician and/or Lower Silurian graptolitic shale (Fig. 8) (Poprawa & Kiersnowski, 2008; Poprawa, 2010). For that formation, Wood Mackenzie and Advanced Resources International estimated recoverable gas resources as equal to 1,400 mld m exp.3 and to 3,000 mld m exp.3, respectively. Also the Lower Carboniferous shale of the south-western Poland (area of Fore-Sudetic Homocline; Fig. 8) could potentially accumulate gas, however in this case a limitation to potential for shale gas is a complex tectonic setting. Other black shale formations in Poland appear to have lower potential for shale gas exploration due to insufficient thermal maturity, low TOC, or low thickness
    corecore