4 research outputs found

    Two-dimensional ordered â-sheet lipopeptide monolayers

    No full text
    A series of amphiphilic lipopeptides, ALPs, consisting of an alternating hydrophilic and hydrophobic amino acid residue sequence coupled to a phospholipid tail, was designed to form supramolecular assemblies composed of -sheet monolayers decorated by lipid tails at the air-water interface. A straightforward synthetic approach based on solid-phase synthesis, followed by an efficient purification protocol was used to prepare the lipid-peptide conjugates. Structural insight into the organization of monolayers was provided by surface pressure versus area isotherms, circular dichroism, Fourier transform infrared spectroscopy, and Brewster angle microscopy. In situ grazing-incidence X-ray diffraction (GIXD) revealed that lipopeptides six to eight amino acids in length form a new type of 2D self-organized monolayers that exhibit -sheet ribbons segregated by lipid tails. The conclusions drawn from the experimental findings were supported by a representative model based on molecular dynamics simulations of amphiphilic lipopeptides at the vacuum-water interface

    Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at sqrts=7sqrt{s} = 7 TeV

    No full text
    Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at sqrt(s) = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV is obtained at the 95% confidence level
    corecore