11,496 research outputs found

    Gyrating Schrodinger Geometries and Non-Relativistic Field Theories

    Get PDF
    We propose homogeneous metrics of Petrov type III that describe gyrating Schrodinger geometries as duals to some non-relativistic field theories, in which the Schrodinger symmetry is broken further so that the phase space has a linear dependence of the momentum in a selected direction. We show that such solutions can arise in four-dimensional Einstein-Weyl supergravity as well as higher-dimensional extended gravities with quadratic curvature terms coupled to a massive vector. In Einstein-Weyl supergravity, the gyrating Schrodinger solutions can be supersymmetric, preserving 1/4 of the supersymmetry. We obtain the exact Green function in the phase space associated with a bulk free massive scalar.Comment: 9 page

    On Realisations of W Algebras

    Full text link
    It has been known for some time that WW algebras can be realised in terms of an energy-momentum tensor together with additional free scalar fields. Some recent results have shown that more general realisations are also possible. In this paper, we consider a wide class of realisations that may be obtained from the Miura transformation, related to the existence of canonical subalgebras of the Lie algebras on which the WW algebras are based. We give explicit formulae for all realisations of this kind, and discuss their applications in WW-string theory.Comment: 11 page

    T-duality and U-duality in toroidally-compactified strings

    Get PDF
    We address the issue of T-duality and U-duality symmetries in the toroidally-compactified type IIA string. It is customary to take as a starting point the dimensionally-reduced maximal supergravity theories, with certain field strengths dualised such that the classical theory exhibits a global En(n)E_{n(n)} symmetry, where n=11-D in D dimensions. A discrete subgroup then becomes the conjectured U-duality group. In dimensions D\le 6, these necessary dualisations include NS-NS fields, whose potentials, rather than merely their field strengths, appear explicitly in the couplings to the string worldsheet. Thus the usually-stated U-duality symmetries act non-locally on the fundamental fields of perturbative string theory. At least at the perturbative level, it seems to be more appropriate to consider the symmetries of the versions of the lower-dimensional supergravities in which no dualisations of NS-NS fields are required, although dualisations of the R-R fields are permissible since these couple to the string through their field strengths. Taking this viewpoint, the usual T-duality groups survive unscathed, as one would hope since T-duality is a perturbative symmetry, but the U-duality groups are modified in D\le 6.Comment: Latex, 21 pages. References and discussion adde
    • …
    corecore