17 research outputs found

    Differential resistance of human embryonic stem cells and somatic cell types to hydrogen peroxide-induced genotoxicity may be dependent on innate basal intracellular ROS levels

    Get PDF
    Previously, we demonstrated that undifferentiated human embryonic stem cells (hESC) displayed higher resistance to oxidative and genotoxic stress compared to somatic cells, but did not further probe the underlying mechanisms. Using H2O2-induced genotoxicity as a model, this study investigated whether higher resistance of hESC to oxidative and genotoxic stress could be due to lower innate basal intracellular levels of reactive oxygen species (ROS), as compared to their differentiated fibroblastic progenies (H1F) and two other somatic cell types — human embryonic palatal mesenchymal (HEPM) cells and peripheral blood lymphocytes (PBL). Comet assay demonstrated that undifferentiated hESC consistently sustained lower levels of DNA damage upon acute exposure to H2O2 for 30 min, compared to somatic cells. DCFDA and HE staining with flow cytometry showed that undifferentiated hESC had lower innate basal intracellular levels of reactive oxygen species compared to somatic cells, which could lead to their higher resistance to genotoxic stress upon acute exposure to H2O2

    Telomere-mediated Genomic Instability in Cells from Ataxia Telangiectasia Patients

    Get PDF
    Ataxia Telangiectasia Mutated Protein (ATM) is one of the first DNA damage sensors and is involved in telomere repair. Telomeres help maintain the stability of our chromosomes by protecting their ends from degradation. AT patients lacking the gene ATM are susceptible to acquire chromosomal anomalies and show heightened susceptibility to cancer. Here we show that cells from AT patients display considerable telomere attrition. Further, induced DNA damage and genomic instability were found to be more in DNA repair deficient ATM-/- cells (treated and untreated) than in normal cells. Results demonstrate that the cells ATM- deficient (heterozygous and homozygous) cells are sensitive to arsenite- and radiation-induced oxidative stress. Elevated numbers of chromosome alterations was seen in arsenic-treated and irradiated ATM-/- cells. The results might help in understanding the extent of susceptibility of AT patients to oxidative stress

    Cryopreservation of Neurospheres Derived from Human Glioblastoma Multiforme

    Get PDF
    Cancer stem cells have been shown to initiate and sustain tumor growth. In many instances, clinical material is limited, compounded by a lack of methods to preserve such cells at convenient time points. Although brain tumor-initiating cells grown in a spheroid manner have been shown to maintain their integrity through serial transplantation in immune-compromised animals, practically, it is not always possible to have access to animals of suitable ages to continuously maintain these cells. We therefore explored vitrification as a cryopreservation technique for brain tumor-initiating cells. Tumor neurospheres were derived from five patients with glioblastoma multiforme (GBM). Cryopreservation in 90% serum and 10% dimethyl sulfoxide yielded greatest viability and could be explored in future studies. Vitrification yielded cells that maintained self-renewal and multipotentiality properties. Karyotypic analyses confirmed the presence of GBM hallmarks. Upon implantation into NOD/SCID mice, our vitrified cells reformed glioma masses that could be serially transplanted. Transcriptome analysis showed that the vitrified and nonvitrified samples in either the stem-like or differentiated states clustered together, providing evidence that vitrification does not change the genotype of frozen cells. Upon induction of differentiation, the transcriptomes of vitrified cells associated with the original primary tumors, indicating that tumor stem-like cells are a genetically distinct population from the differentiated mass, underscoring the importance of working with the relevant tumor-initiating population. Our results demonstrate that vitrification of brain tumor-initiating cells preserves the biological phenotype and genetic profiles of the cells. This should facilitate the establishment of a repository of tumor-initiating cells for subsequent experimental designs

    Telomere-chromosome integrity in breast cancer

    No full text
    Ph.DDOCTOR OF PHILOSOPH

    Telomere-mediated Genomic Instability in Cells from Ataxia Telangiectasia Patients

    Get PDF
    Ataxia Telangiectasia Mutated Protein (ATM) is one of the first DNA damage sensors and is involved in telomere repair. Telomeres help maintain the stability of our chromosomes by protecting their ends from degradation. AT patients lacking the gene ATM are susceptible to acquire chromosomal anomalies and show heightened susceptibility to cancer. Here we show that cells from AT patients display considerable telomere attrition. Further, induced DNA damage and genomic instability were found to be more in DNA repair deficient ATM-/- cells (treated and untreated) than in normal cells. Results demonstrate that the cells ATM- deficient (heterozygous and homozygous) cells are sensitive to arsenite- and radiation-induced oxidative stress. Elevated numbers of chromosome alterations was seen in arsenic-treated and irradiated ATM-/- cells. The results might help in understanding the extent of susceptibility of AT patients to oxidative stress

    CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling.

    Get PDF
    Understanding how autocrine/paracrine factors regulate neural stem cell (NSC) survival and growth is fundamental to the utilization of these cells for therapeutic applications and as cellular models for the brain. In vitro, NSCs can be propagated along with neural progenitors (NPs) as neurospheres (nsphs). The nsph conditioned medium (nsph-CM) contains cell-secreted factors that can regulate NSC behavior. However, the identity and exact function of these factors within the nsph-CM has remained elusive. We analyzed the nsph-CM by mass spectrometry and identified DSD-1-proteoglycan, a chondroitin sulfate proteoglycan (CSPG), apolipoprotein E (ApoE) and cystatin C as components of the nsph-CM. Using clonal assays we show that CSPG and ApoE are responsible for the ability of the nsph-CM to stimulate nsph formation whereas cystatin C is not involved. Clonal nsphs generated in the presence of CSPG show more than four-fold increase in NSCs. Thus CSPG specifically enhances the survival of NSCs. CSPG also stimulates the survival of embryonic stem cell (ESC)-derived NSCs, and thus may be involved in the developmental transition of ESCs to NSCs. In addition to its role in NSC survival, CSPG maintains the three dimensional structure of nsphs. Lastly, CSPG's effects on NSC survival may be mediated by enhanced signaling via EGFR, JAK/STAT3 and PI3K/Akt pathways
    corecore