22 research outputs found
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Point mutation in meningococcal por A gene associated with increased endemic disease
The por A gene, which encodes expression of meningococcal class 1 outer membrane protein, responsible for antigenic subtype specificity, has been cloned and sequenced in an isolate of Neisseria meningitidis (B:15:P1.7,16) from a patient in the Gloucester area with meningococcal meningitis. Comparison of the sequence with that of the equivalent gene from the P1.7,16 reference strain reveals a point mutation which generates a single aminoacid change in the epitope responsible for P1.16 specificity. Monoclonal antibodies with P1.16 specificity do not react with synthetic peptides that correspond to the altered epitope, and do not promote complement-mediated bactericidal killing of the isolate. Analysis of other strains shows widespread distribution of infections due to B:15:P1.7,16 meningococci with the altered epitope (P1.16b) in England and Wales
Meningococcal disease in the Netherlands, 1959-1981. II. The occurrence of serogroups and serotypes 2A and 2B of neisseria-meningitidis.
By means of a filter radioimmunoassay and the use of monoclonal anti-2a and anti-2b antibodies, we have serotyped 3164 of 3688 strains of Neisseria meningitidis isolated from patients in The Netherlands between 1959 and 1981. Serotypes 2a and 2b were distributed differently among the major serogroups A, B, C, and W-135. Neither of the types was found among group A strains. Type 2b strains of serogroup B emerged in 1965, causing a country-wide epidemic which reached a peak incidence in March and April of 1966 and continued to predominate within group B until 1979. Type 2a strains of serogroup C were responsible for a substantial number of sporadic cases over a long period without any association with outbreaks or with a shift in the pattern of the serogroup. After the appearance of group W-135 in 1971, W-135 strains caused a small non-focal epidemic wave. The upsurge of disease due to virulent sub-populations of strains B:2b and C:2a appeared to be closely related to a basic pattern of regular cyclical waves with peak intervals which differed for serogroups A, B, and C. In recent years both serotype 2a and 2b strains within the different serogroups fell to insignificant numbers. Our results show that retrospective large-scale serotyping of collected strains provides insight into the epidemiological patterns of endemic meningococcal disease
Synthetic trimer and tetramer of3-ß-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to the Haemophilus influenzae type b capsular polysaccharide in mice and monkeys
Synthetic oligosaccharides derived from the capsular polysaccharide (PRP) of Haemophilus influenzae type b were conjugated to carrier proteins via a thioether linkage. Conjugates were made of trimeric and tetrameric ribose-ribitol-phosphate and tetanus toxoid or diphtheria toxin. All conjugates elicited anti-PRP antibody responses with an increasing immunoglobulin G/immunoglobulin M ratio in adult mice and monkeys. Trimer conjugates elicited lower anti-PRP antibody responses compared with tetramer conjugates. Adult monkeys responded equally well to the tetrameric oligosaccharide-tetanus toxoid conjugate as to the oligosaccharide-CRM197 conjugate (HbOC), which elicits protective levels of serum antibodies in human infants after two or three injections
Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae
Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02 h−1 (LmSPase) and 0.06 ± 0.01 h−1 (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01 h−1 and 0.08 ± 0.00 h−1, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.Accepted Author ManuscriptBT/Industrial MicrobiologyBT/Biotechnolog