5 research outputs found
Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment
The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments
Sequencing orphan species initiative (SOS): Filling the gaps in the 16S rRNA gene sequence database for all species with validly published names
High quality 16S ribosomal RNA (rRNA) gene sequences from the type strains of all species with validly published names, as defined by the International Code of Nomenclature of Bacteria, are a prerequisite for their accurate affiliations within the global genealogical classification and for the recognition of potential new taxa. During the last few years, the Living Tree Project (LTP) has taken care to create a high quality, aligned 16S and 23S rRNA gene sequence database of all type strains. However, the manual curation of the sequence dataset and type strain information revealed that a total of 552 "orphan" species (about 5.7% of the currently classified species) had to be excluded from the reference trees. Among them, 322 type strains were not represented by an SSU entry in the public sequence repositories. The remaining 230 type strains had to be discarded due to bad sequence quality. Since 2010, the LTP team has coordinated a network of researchers and culture collections in order to improve the situation by (re)-sequencing the type strains of these "orphan" species. As a result, we can now report 351 165 rRNA gene sequences of type strains. Nevertheless, 201 species could not be sequenced because cultivable type strains were not available (121), the cultures had either been lost or were never deposited in the first place (66), or it was not possible due to other constraints (14). The International Code of Nomenclature of Bacteria provides a number of mechanisms to deal with the problem of missing type strains and we recommend that due consideration be given to the appropriate mechanisms in order to help solve some of these issues. (C) 2013 Elsevier GmbH. All rights reserved