196 research outputs found

    New classes of exact solutions of three-dimensional Navier-Stokes equations

    Full text link
    New classes of exact solutions of the three-dimensional unsteady Navier-Stokes equations containing arbitrary functions and parameters are described. Various periodic and other solutions, which are expressed through elementary functions are obtained. The general physical interpretation and classification of solutions is given.Comment: 11 page

    Self-gravitating spheres of anisotropic fluid in geodesic flow

    Full text link
    The fluid models mentioned in the title are classified. All characteristics of the fluid are expressed through a master potential, satisfying an ordinary second order differential equation. Different constraints are imposed on this core of relations, finding new solutions and deriving the classical results for perfect fluids and dust as particular cases. Many uncharged and charged anisotropic solutions, all conformally flat and some uniform density solutions are found. A number of solutions with linear equation among the two pressures are derived, including the case of vanishing tangential pressure.Comment: 21 page

    Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation

    Get PDF
    The D-dimensional cosmological model on the manifold M=R×M1×M2M = R \times M_{1} \times M_{2} describing the evolution of 2 Einsteinian factor spaces, M1M_1 and M2M_2, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces M1,M2M_1,M_2 and the 2-component perfect fluid source.Comment: LaTeX file, no figure

    Mapping of Coulomb gases and sine-Gordon models to statistics of random surfaces

    Get PDF
    We introduce a new class of sine-Gordon models, for which interaction term is present in a region different from the domain over which quadratic part is defined. We develop a novel non-perturbative approach for calculating partition functions of such models, which relies on mapping them to statistical properties of random surfaces. As a specific application of our method, we consider the problem of calculating the amplitude of interference fringes in experiments with two independent low dimensional Bose gases. We calculate full distribution functions of interference amplitude for 1D and 2D gases with nonzero temperatures.Comment: final published versio

    The heat and mass transfer modeling with time delay

    Get PDF
    Nonlinear hyperbolic reaction-diffusion equations with a delay in time are investigated. All equations considered here contain one arbitrary function. Exact solutions are also presented for more complex nonlinear equations in which delay arbitrarily depends on time. Exact solutions with a generalized separation of variables are found. For special cases, new exact solutions in the form of a traveling waves are obtained, some of which can be represented in terms of elementary functions. All of these solutions contain free (arbitrary) parameters, so that one can use them to solve modeling problems of heat and mass transfer with relaxation phenomena

    Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem

    Full text link
    The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximal Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given. In particular, the well-known baroclinic Rossby wave solutions in the two-layer model are rediscovered.Comment: Extended version, 24 pages, 1 figur

    Multidimensional integrable vacuum cosmology with two curvatures

    Get PDF
    The vacuum cosmological model on the manifold R×M1×…×MnR \times M_1 \times \ldots \times M_n describing the evolution of nn Einstein spaces of non-zero curvatures is considered. For n=2n = 2 the Einstein equations are reduced to the Abel (ordinary differential) equation and solved, when (N1=(N_1 = dim M1,N2= M_1, N_2 = dimM2)=(6,3),(5,5),(8,2) M_2) = (6,3), (5,5), (8,2). The Kasner-like behaviour of the solutions near the singularity ts→+0t_s \to +0 is considered (tst_s is synchronous time). The exceptional ("Milne-type") solutions are obtained for arbitrary nn. For n=2n=2 these solutions are attractors for other ones, when ts→+∞t_s \to + \infty. For dim M=10,11 M = 10, 11 and 3≤n≤53 \leq n \leq 5 certain two-parametric families of solutions are obtained from n=2n=2 ones using "curvature-splitting" trick. In the case n=2n=2, (N1,N2)=(6,3)(N_1, N_2)= (6,3) a family of non-singular solutions with the topology R7×M2R^7 \times M_2 is found.Comment: 21 pages, LaTex. 5 figures are available upon request (hard copy). Submitted to Classical and Quantum Gravit

    The delayed uncoupled continuous-time random walks do not provide a model for the telegraph equation

    Full text link
    It has been alleged in several papers that the so called delayed continuous-time random walks (DCTRWs) provide a model for the one-dimensional telegraph equation at microscopic level. This conclusion, being widespread now, is strange, since the telegraph equation describes phenomena with finite propagation speed, while the velocity of the motion of particles in the DCTRWs is infinite. In this paper we investigate how accurate are the approximations to the DCTRWs provided by the telegraph equation. We show that the diffusion equation, being the correct limit of the DCTRWs, gives better approximations in L2L_2 norm to the DCTRWs than the telegraph equation. We conclude therefore that, first, the DCTRWs do not provide any correct microscopic interpretation of the one-dimensional telegraph equation, and second, the kinetic (exact) model of the telegraph equation is different from the model based on the DCTRWs.Comment: 12 pages, 9 figure

    Schwinger Pair Production in dS_2 and AdS_2

    Full text link
    We study Schwinger pair production in scalar QED from a uniform electric field in dS_2 with scalar curvature R_{dS} = 2 H^2 and in AdS_2 with R_{AdS} = - 2 K^2. With suitable boundary conditions, we find that the pair-production rate is the same analytic function of the scalar curvature in both cases.Comment: RevTex 6 pages, no figure; replaced by the version published in PR

    Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface

    Full text link
    We present a closed description of the charge carrier injection process from a conductor into an insulator. Common injection models are based on single electron descriptions, being problematic especially once the amount of charge-carriers injected is large. Accordingly, we developed a model, which incorporates space charge effects in the description of the injection process. The challenge of this task is the problem of self-consistency. The amount of charge-carriers injected per unit time strongly depends on the energy barrier emerging at the contact, while at the same time the electrostatic potential generated by the injected charge- carriers modifies the height of this injection barrier itself. In our model, self-consistency is obtained by assuming continuity of the electric displacement and the electrochemical potential all over the conductor/insulator system. The conductor and the insulator are properly taken into account by means of their respective density of state distributions. The electric field distributions are obtained in a closed analytical form and the resulting current-voltage characteristics show that the theory embraces injection-limited as well as bulk-limited charge-carrier transport. Analytical approximations of these limits are given, revealing physical mechanisms responsible for the particular current-voltage behavior. In addition, the model exhibits the crossover between the two limiting cases and determines the validity of respective approximations. The consequences resulting from our exactly solvable model are discussed on the basis of a simplified indium tin oxide/organic semiconductor system.Comment: 23 pages, 6 figures, accepted to Phys.Rev.
    • …
    corecore