446 research outputs found

    Exotic phenomena in doped quantum magnets

    Full text link
    We investigate the properties of the two-dimensional frustrated quantum antiferromagnet on the square lattice, especially at infinitesimal doping. We find that next nearest neighbor (N.N.) J2 and next-next N.N. J3 interactions together destroy the antiferromagnetic long range order and stabilize a quantum disordered valence bond crystalline plaquette phase. A static vacancy or a dynamic hole doped into this phase liberates a spinon. From the profile of the spinon wavefunction around the (static) vacancy we identify an intermediate behavior between complete deconfinement (behavior seen in the kagome lattice) and strong confinement (behavior seen in the checkerboard lattice) with the emergence of two length scales, a spinon confinement length larger than the magnetic correlation length. When a finite hole hopping is introduced, this behavior translates into an extended (mobile) spinon-holon boundstate with a very small quasiparticle weight. These features provide clear evidence for a nearby "deconfined critical point" in a doped microscopic model. Finally, we give arguments in favor of superconducting properties of the doped plaquette phase.Comment: Submitted to J. of Phys. Condens. Matter (Proceedings of International Conference "Highly Frustrated Magnets", Osaka (Japan), August 2006). 6 pages, 5 figures Display problems with Figure 2 fixe

    Spin Gaps in Coupled t-J Ladders

    Full text link
    Spin gaps in coupled tt-JJ ladders are investigated by exact diagonalization of small clusters up to 4×\times8 sites. At half-filling, the numerical results for the triplet excitation spectrum are in very good agreement with a second order perturbation expansion in term of small inter-ladder and intra-ladder exchange couplings between rungs (J/J′J/J^\prime<<0.250.25). The band of local triplet excitations moving coherently along the ladder (with momenta close to π\pi) is split by the inter-ladder coupling. For intermediate couplings finite size scaling is used to estimate the spin gap. In the isotropic infinite 4-chain system (two coupled ladders) we find a spin gap of 0.245J0.245 J, roughly half of the single ladder spin gap. When the system is hole doped, bonding and anti-bonding bound pairs of holes can propagate coherently along the chains and the spin gap remains finite.Comment: 11 pages, 5 figures, uuencoded form of postscript files of figures and text, LPQTH-94/

    Charge profile of surface doped C60

    Full text link
    We study the charge profile of a C60-FET (field effect transistor) as used in the experiments of Schoen, Kloc and Batlogg. Using a tight-binding model, we calculate the charge profile treating the Coulomb interaction in a mean-field approximation. The charge profile behaves similarly to the case of a continuous space-charge layer, in particular it is confined to a single interface layer for doping higher than ~0.3 electron (or hole) per C60 molecule. The morahedral disorder of the C60 molecules smoothens the structure in the density of states.Comment: 6 pages, 9 figure

    Phase diagram of the two-dimensional t--J model at low doping

    Full text link
    The phase diagram of the planar t--J model at small hole doping is investigated by finite size scaling of exact diagonalisation data of NXN clusters (up to 26). Hole-droplet binding energies, compressibility and static spin and charge correlations are calculated. Short range antiferromagnetic correlations can produce attractive forces between holes leading to a very rich phase diagram including a liquid of d-wave hole pairs (for J/t≳0.2J/t\gtrsim 0.2), a liquid of hole droplets (quartets) for larger J/t ratios (J/t≳0.5J/t\gtrsim 0.5) and, at even larger coupling J/t, an instability towards phase separation.Comment: 3 pages, latex, 5 postscript figures, uuencode

    Spin dynamics of the spin-Peierls compound CuGeO_3 under magnetic field

    Full text link
    The magnetic field--driven transition in the spin-Peierls system CuGeO_3 associated with the closing of the spin gap is investigated numerically. The field dependence of the spin dynamical structure factor (seen by inelastic neutron scattering) and of the momentum dependent static susceptibility are calculated. In the dimerized phase (H<H_c), we suggest that the strong field dependence of the transverse susceptibility could be experimentally seen from the low temperature spin-echo relaxation rate 1/T_{2G} or the second moment of the NMR spectrum. Above H_c low energy spin excitations appear at incommensurate wave vectors where the longitudinal susceptibility chi_{zz}(q) peaks.Comment: 4 pages, LaTeX, postscript figures include

    Low-frequency current fluctuations in doped ladders

    Full text link
    Charge current static and dynamical correlations are computed by exact diagonalisation methods on a 2-leg t-t'-J ladder which exhibits a sharp transition between a Luther-Emery (LE) phase of hole pairs and a phase with deconfined holes. In the LE phase, we find short-range low-energy incommensurate current fluctuations which are intrinsically connected to the internal charge dynamics within one hole pair. On the contrary, when holes unbind, the maximum of the current susceptibility moves abruptly to the commensurate wavevector π\pi and strongly increases for decreasing doping suggesting an instability towards a staggered flux state at sufficiently small doping.Comment: 4 pages, 5 figure

    Superconducting fluctuations in the Luther-Emery liquid

    Full text link
    The single-particle superconducting Green's functions of a Luther-Emery liquid is computed by bosonization techniques. Using a formulation introduced by Poilblanc and Scalapino [Phys. Rev. B v. 66, art. 052513 (2002)], an asymptotic expression of the superconducting gap is deduced in the long wavelength and small frequency limit. Due to superconducting phase fluctuations, the gap exhibits as a function of size L a (1/L)^{1/2K_\rho} power-law decay as well as an interesting singularity at the spectral gap energy. Similarities and differences with the 2-leg t-J ladder are outlined.Comment: RevTeX 4, 3 pages, 2 EPS figure

    Checkerboard order in the t--J model on the square lattice

    Full text link
    We propose that the inhomogeneous patterns seen by STM in some underdoped superconducting cuprates could be related to a bond-order-wave instability of the staggered flux state, one of the most studied "normal" state proposed to compete with the d-wave RVB superconductor. A checkerboard pattern is obtained by a Gutzwiller renormalized mean-field theory of the t-J model for doping around 1/8. It is found that the charge modulation is always an order of magnitude smaller than the bond-order modulations. This is confirmed by an exact optimization of the wavefunction by a variational Monte Carlo scheme. The numerical estimates of the order parameters are however found to be strongly reduced w.r.t their mean-field values

    Charge density correlations in t-J ladders investigated by the CORE method

    Full text link
    Using 4-site plaquette or rung basis decomposition, the CORE method is applied to 2-leg and 4-leg t-J ladders and cylinders. Resulting range-2 effective hamiltonians are studied numerically on periodic rings taking full advantage of the translation symmetry as well as the drastic reduction of the Hilbert space. We investigate the role of magnetic and fermionic degrees of freedom to obtain the most reliable representation of the underlying model. Spin gaps, pair binding energies and charge correlations are computed and compared to available ED and DMRG data for the full Hamiltonian. Strong evidences for short-range diagonal stripe correlations are found in periodic 4-leg t-J ladders.Comment: Computation of Luttinger liquid parameters (charge velocity and charge correlation exponent) adde

    Binding of holes and pair spectral function in the t-J model

    Full text link
    Clusters of the two-dimensionnal t--J model with 2 holes and up to 26 sites are diagonalized using a Lanczos algorithm. The behaviour of the binding energy with system size suggests the existence of a finite critical value of J above which binding occurs in the bulk. Only the d-wave pair field operator acting on the Heisenberg GS has a finite overlap with the 2 hole ground state for all the clusters considered. The related spectral function associated with the propagation of a d-wave (spin singlet) pair of holes in the antiferromagnetic background is calculated. The quasiparticle peak at the bottom of the spectrum as well as some structure appearing above the peak survive with increasing cluster size. Although no simple scaling law was found for the quasiparticle weight the data strongly suggest that this weight is finite in the bulk limit and is roughly proportional to the antiferromagnetic coupling J (for J<1).Comment: Report LPQTH-93/01, 18 pages (REVTEX), 8 postscript files include
    • …
    corecore