12 research outputs found

    Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae

    No full text
    International audienceThe purpose of this study was to explore the role of glycogen and trehalose in the ability of Saccharomyces cerevisiae to respond to a sudden rise of the carbon flux. To this end, aerobic glucose-limited continuous cultures were challenged with a sudden increase of the dilution rate from 0.05 to 0.15 h−1. Under this condition, a rapid mobilization of glycogen and trehalose was observed which coincided with a transient burst of budding and a decrease of cell biomass. Experiments carried out with mutants defective in storage carbohydrates indicated a predominant role of glycogen in the adaptation to this perturbation. However, the real importance of trehalose in this response was veiled by the unexpected phenotypes harboured by the tps1 mutant, chosen for its inability to synthesize trehalose. First, the biomass yield of this mutant was 25% lower than that of the isogenic wild-type strain at dilution rate of 0.05 h−1, and this difference was annulled when cultures were run at a higher dilution rate of 0.15 h−1. Second, the tps1 mutant was more effective to sustain the dilution rate shift-up, apparently because it had a faster glycolytic rate and an apparent higher capacity to consume glucose with oxidative phosphorylation than the wild type. Consequently, a tps1gsy1gsy2 mutant was able to adapt to the dilution rate shift-up after a long delay, likely because the detrimental effects from the absence of glycogen was compensated for by the tps1 mutation. Third, a glg1Δglg2Δ strain, defective in glycogen synthesis because of the lack of the glycogen initiation protein, recovered glycogen accumulation upon further deletion of TPS1. This recovery, however, required glycogen synthase. Finally, we demonstrated that the rapid breakdown of reserve carbohydrates triggered by the shift-up is merely due to changes in the concentrations of hexose-6-phosphate and UDPglucose, which are the main metabolic effectors of the rate-limiting enzymes of glycogen and trehalose pathways

    Molecular Characterization of Clostridium tetani Strains by Pulsed-Field Gel Electrophoresis and Colony PCR

    No full text
    Pulsed-field gel electrophoresis and PCR were applied for the first time to the molecular characterization of Clostridium tetani. Among five strains tested, one (CN1339) turned out to contain a mixture of two genetically different clones and two (D11 and G761) to contain bacteria differing by the presence or absence of the 74-kb plasmid harboring the tetX gene

    Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae

    No full text
    International audienceThe dynamic responses of reserve carbohydrates with respect to shortage of either carbon or nitrogen source was studied to obtain a sound basis for further investigations devoted to the characterization of mechanisms by which the yeast Saccharomyces cerevisiae can cope with nutrient limitation during growth. This study was carried out in well-controlled bioreactors which allow accurate monitoring of growth and frequent sampling without disturbing the culture. Under glucose limitation, genes involved in glycogen and trehalose biosynthesis (GLG1, GSY1, GSY2, GAC1, GLC3, TPS1), in their degradation (GPH1, NTH1), and the typical stress-responsive CTT1 gene were coordinately induced in parallel with glycogen, when the growth has left the pure exponential phase and while glucose was still plentiful in the medium. Trehalose accumulation was delayed until the diauxic shift, although TPS1 was induced much earlier, due to hydrolysis of trehalose by high trehalase activity. In contrast, under nitrogen limitation, both glycogen and trehalose began to accumulate at the precise time when the nitrogen source was exhausted from the medium, coincidentally with the transcriptional activation of genes involved in their metabolism. While this response to nitrogen starvation was likely mediated by the stress-responsive elements (STREs) in the promoter of these genes, we found that these elements were not responsible for the co-induction of genes involved in reserve carbohydrate metabolism during glucose limitation, since GLG1, which does not contain any STRE, was coordinately induced with GSY2 and TPS1

    Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae

    No full text
    International audienceThe dynamic responses of reserve carbohydrates with respect to shortage of either carbon or nitrogen source was studied to obtain a sound basis for further investigations devoted to the characterization of mechanisms by which the yeast Saccharomyces cerevisiae can cope with nutrient limitation during growth. This study was carried out in well-controlled bioreactors which allow accurate monitoring of growth and frequent sampling without disturbing the culture. Under glucose limitation, genes involved in glycogen and trehalose biosynthesis (GLG1, GSY1, GSY2, GAC1, GLC3, TPS1), in their degradation (GPH1, NTH1), and the typical stress-responsive CTT1 gene were coordinately induced in parallel with glycogen, when the growth has left the pure exponential phase and while glucose was still plentiful in the medium. Trehalose accumulation was delayed until the diauxic shift, although TPS1 was induced much earlier, due to hydrolysis of trehalose by high trehalase activity. In contrast, under nitrogen limitation, both glycogen and trehalose began to accumulate at the precise time when the nitrogen source was exhausted from the medium, coincidentally with the transcriptional activation of genes involved in their metabolism. While this response to nitrogen starvation was likely mediated by the stress-responsive elements (STREs) in the promoter of these genes, we found that these elements were not responsible for the co-induction of genes involved in reserve carbohydrate metabolism during glucose limitation, since GLG1, which does not contain any STRE, was coordinately induced with GSY2 and TPS1

    Genomics of Clostridium tetani

    Get PDF
    International audienceGenomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies

    Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae

    No full text
    International audienceThe dynamic responses of reserve carbohydrates with respect to shortage of either carbon or nitrogen source was studied to obtain a sound basis for further investigations devoted to the characterization of mechanisms by which the yeast Saccharomyces cerevisiae can cope with nutrient limitation during growth. This study was carried out in well-controlled bioreactors which allow accurate monitoring of growth and frequent sampling without disturbing the culture. Under glucose limitation, genes involved in glycogen and trehalose biosynthesis (GLG1, GSY1, GSY2, GAC1, GLC3, TPS1), in their degradation (GPH1, NTH1), and the typical stress-responsive CTT1 gene were coordinately induced in parallel with glycogen, when the growth has left the pure exponential phase and while glucose was still plentiful in the medium. Trehalose accumulation was delayed until the diauxic shift, although TPS1 was induced much earlier, due to hydrolysis of trehalose by high trehalase activity. In contrast, under nitrogen limitation, both glycogen and trehalose began to accumulate at the precise time when the nitrogen source was exhausted from the medium, coincidentally with the transcriptional activation of genes involved in their metabolism. While this response to nitrogen starvation was likely mediated by the stress-responsive elements (STREs) in the promoter of these genes, we found that these elements were not responsible for the co-induction of genes involved in reserve carbohydrate metabolism during glucose limitation, since GLG1, which does not contain any STRE, was coordinately induced with GSY2 and TPS1

    NOTES AGT1, Encoding an ïżœ-Glucoside Transporter Involved in Uptake and Intracellular Accumulation of Trehalose

    No full text
    The trehalose content in Saccharomyces cerevisiae can be significantly manipulated by including trehalose at an appropriate level in the growth medium. Its uptake is largely dependent on the expression of AGT1, which encodes an ïżœ-glucoside transporter. The trehalose found in a tps1 mutant of trehalose synthase may therefore largely reflect its uptake from the enriched medium that was employed. Most work on trehalose metabolism in yeast concerns factors governing its endogenous level (6, 14, 15). Trehalose synthase is a multimeric protein composed of four subunits encoded by TPS1, TPS2, TSL1, and TPS3 (2, 18), of which only Tps1p catalyzing the formation of trehalose-6-phosphate from UDP-Glc and glucose-6-phosphate is essential for growth on rapidly fermentable carbon sources like glucose and fructose (8, 22). The molecular mechanism underlying this defect is not yet understood (21). The deletion of TPS1 in principle results in the loss of trehalose accumulation. However, the existence of another functional pathway for trehalose synthesis in yeas

    The population structure of Clostridium tetani deduced from its pan-genome

    No full text
    Erratum in : Author Correction: The population structure of Clostridium tetani deduced from its pan-genome. [Sci Rep. 2019]International audienceClostridium tetani produces a potent neurotoxin, the tetanus neurotoxin (TeNT) that is responsible for the worldwide neurological disease tetanus, but which can be efficiently prevented by vaccination with tetanus toxoid. Until now only one type of TeNT has been characterized and very little information exists about the heterogeneity among C. tetani strains. We report here the genome sequences of 26 C. tetani strains, isolated between 1949 and 2017 and obtained from different locations. Genome analyses revealed that the C. tetani population is distributed in two phylogenetic clades, a major and a minor one, with no evidence for clade separation based on geographical origin or time of isolation. The chromosome of C. tetani is highly conserved; in contrast, the TeNT-encoding plasmid shows substantial heterogeneity. TeNT itself is highly conserved among all strains; the most relevant difference is an insertion of four amino acids in the C-terminal receptor-binding domain in four strains that might impact on receptor-binding properties. Other putative virulence factors, including tetanolysin and collagenase, are encoded in all genomes. This study highlights the population structure of C. tetani and suggests that tetanus-causing strains did not undergo extensive evolutionary diversification, as judged from the high conservation of its main virulence factors
    corecore