36 research outputs found

    Non-Spinning Black Holes in Alternative Theories of Gravity

    Full text link
    We study two large classes of alternative theories, modifying the action through algebraic, quadratic curvature invariants coupled to scalar fields. We find one class that admits solutions that solve the vacuum Einstein equations and another that does not. In the latter, we find a deformation to the Schwarzschild metric that solves the modified field equations in the small coupling approximation. We calculate the event horizon shift, the innermost stable circular orbit shift, and corrections to gravitational waves, mapping them to the parametrized post-Einsteinian framework.Comment: 7 pages, submitted to PR

    General Spectral Flow Formula for Fixed Maximal Domain

    Full text link
    We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.Comment: 22 page

    Doubly connected minimal surfaces and extremal harmonic mappings

    Get PDF
    The concept of a conformal deformation has two natural extensions: quasiconformal and harmonic mappings. Both classes do not preserve the conformal type of the domain, however they cannot change it in an arbitrary way. Doubly connected domains are where one first observes nontrivial conformal invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue for quasiconformal and harmonic mappings, respectively. Combining these concepts we obtain sharp estimates for quasiconformal harmonic mappings between doubly connected domains. We then apply our results to the Cauchy problem for minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a sharp estimate of the modulus of a doubly connected minimal surface that evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde

    Uniqueness of optimal trajectories for non-linear control systems

    Full text link

    A uniqueness theorem for the solution of a family of hyperbolic integro-differential equations

    Full text link

    Remark on a partial differential inequality of the first order

    Full text link

    Remarque sur le système dynamique dans le domaine doublement connexe

    Full text link
    corecore