36 research outputs found
Non-Spinning Black Holes in Alternative Theories of Gravity
We study two large classes of alternative theories, modifying the action
through algebraic, quadratic curvature invariants coupled to scalar fields. We
find one class that admits solutions that solve the vacuum Einstein equations
and another that does not. In the latter, we find a deformation to the
Schwarzschild metric that solves the modified field equations in the small
coupling approximation. We calculate the event horizon shift, the innermost
stable circular orbit shift, and corrections to gravitational waves, mapping
them to the parametrized post-Einsteinian framework.Comment: 7 pages, submitted to PR
General Spectral Flow Formula for Fixed Maximal Domain
We consider a continuous curve of linear elliptic formally self-adjoint
differential operators of first order with smooth coefficients over a compact
Riemannian manifold with boundary together with a continuous curve of global
elliptic boundary value problems. We express the spectral flow of the resulting
continuous family of (unbounded) self-adjoint Fredholm operators in terms of
the Maslov index of two related curves of Lagrangian spaces. One curve is given
by the varying domains, the other by the Cauchy data spaces. We provide
rigorous definitions of the underlying concepts of spectral theory and
symplectic analysis and give a full (and surprisingly short) proof of our
General Spectral Flow Formula for the case of fixed maximal domain. As a side
result, we establish local stability of weak inner unique continuation property
(UCP) and explain its role for parameter dependent spectral theory.Comment: 22 page
Doubly connected minimal surfaces and extremal harmonic mappings
The concept of a conformal deformation has two natural extensions:
quasiconformal and harmonic mappings. Both classes do not preserve the
conformal type of the domain, however they cannot change it in an arbitrary
way. Doubly connected domains are where one first observes nontrivial conformal
invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue
for quasiconformal and harmonic mappings, respectively. Combining these
concepts we obtain sharp estimates for quasiconformal harmonic mappings between
doubly connected domains. We then apply our results to the Cauchy problem for
minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a
sharp estimate of the modulus of a doubly connected minimal surface that
evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde