233 research outputs found
Data Preservation at LEP
The four LEP experiments ALEPH, DELPHI, L3 and OPAL successfully recorded
e+e- collision data during the years 1989 to 2000. As part of the ordinary
evolution in High Energy Physics, these experiments can not be repeated and
their data is therefore unique. This article briefly reviews the data
preservation efforts undertaken by the four experiments beyond the end of data
taking. The current status of the preserved data and associated tools is
summarised.Comment: 7 pages, contribution to proceedings of the "First Workshop on Data
Preservation and Long Term Analysis in HEP
Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: implications for the velocity of cosmic dust entering the atmosphere
The downward fluxes of Fe and Na, measured near the mesopause with the University of Colorado lidars near Boulder, and a chemical ablation model developed at the University of Leeds, are used to constrain the velocity/mass distribution of the meteoroids entering the atmosphere and to derive an improved estimate for the global influx of cosmic dust. We find that the particles responsible for injecting a large fraction of the ablated material into the Earth's upper atmosphere enter at relatively slow speeds and originate primarily from the Jupiter Family of Comets. The global mean Na influx is 17,200 ± 2800 atoms/cm2/s, which equals 298 ± 47 kg/d for the global input of Na vapor and 150 ± 38 t/d for the global influx of cosmic dust. The global mean Fe influx is 102,000 ± 18,000 atoms/cm2/s, which equals 4.29 ± 0.75 t/d for the global input of Fe vapor
A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding
We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010
Momentum Flux Spectra of a Mountain Wave Event Over New Zealand
During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 13 July 2014 research flight over the South Island of New Zealand, a multiscale spectrum of mountain waves (MWs) was observed. High-resolution measurements of sodium densities were available from ~70 to 100 km for the duration of this flight. A comprehensive technique is presented for obtaining temperature perturbations, T′, from sodium mixing ratios over a range of altitudes, and these T′ were used to calculate the momentum flux (MF) spectra with respect to horizontal wavelengths, λH, for each flight segment. Spectral analysis revealed MWs with spectral power centered at λH of ~80, 120, and 220 km. The temperature amplitudes of these MWs varied between the four cross-mountain flight legs occurring between 6:10UT and 9:10UT. The average spectral T′ amplitudes near 80 km in altitude ranged from 7–13 K for the 220 km λH MW and 4–8 K for the smaller λH MWs. These amplitudes decayed significantly up to 90 km, where a critical level for MWs was present. The average MF per unit mass near 80 km in altitude ranged from ~13 to 60 m2/s2 across the varying spectra over the duration of the research flight and decayed to ~0 by 88 km in altitude. These MFs are large compared to zonal means and highlight the importance of MWs in the momentum budget of the mesosphere and lower thermosphere at times when they reach these altitudes
Reprise en porte-à-faux, perspectives 2002-2003 pour l’économie mondiale.
Cette publication n'a pas de résumé
Secondary Outcomes of a Pilot Randomized Trial of Azithromycin Treatment for Asthma
OBJECTIVES: The respiratory pathogen Chlamydia pneumoniae (C. pneumoniae) produces acute and chronic lung infections and is associated with asthma. Evidence for effectiveness of antichlamydial antibiotics in asthma is limited. The primary objective of this pilot study was to investigate the feasibility of performing an asthma clinical trial in practice settings where most asthma is encountered and managed. The secondary objectives were to investigate (1) whether azithromycin treatment would affect any asthma outcomes and (2) whether C. pneumoniae serology would be related to outcomes. This report presents the secondary results. DESIGN: Randomized, placebo-controlled, blinded (participants, physicians, study personnel, data analysts), allocation-concealed parallel group clinical trial. SETTING: Community-based health-care settings located in four states and one Canadian province. PARTICIPANTS: Adults with stable, persistent asthma. INTERVENTIONS: Azithromycin (six weekly doses) or identical matching placebo, plus usual community care. OUTCOME MEASURES: Juniper Asthma Quality of Life Questionnaire (Juniper AQLQ), symptom, and medication changes from baseline (pretreatment) to 3 mo posttreatment (follow-up); C. pneumoniae IgG and IgA antibodies at baseline and follow-up. RESULTS: Juniper AQLQ improved by 0.25 (95% confidence interval; −0.3, 0.8) units, overall asthma symptoms improved by 0.68 (0.1, 1.3) units, and rescue inhaler use decreased by 0.59 (−0.5, 1.6) daily administrations in azithromycin-treated compared to placebo-treated participants. Baseline IgA antibodies were positively associated with worsening overall asthma symptoms at follow-up (p = 0.04), but IgG was not (p = 0.63). Overall asthma symptom improvement attributable to azithromycin was 28% in high IgA participants versus 12% in low IgA participants (p for interaction = 0.27). CONCLUSIONS: Azithromycin did not improve Juniper AQLQ but appeared to improve overall asthma symptoms. Larger community-based trials of antichlamydial antibiotics for asthma are warranted
Search for R-Parity Violating Decays of Scalar Fermions at LEP
A search for pair-produced scalar fermions under the assumption that R-parity
is not conserved has been performed using data collected with the OPAL detector
at LEP. The data samples analysed correspond to an integrated luminosity of
about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An
important consequence of R-parity violation is that the lightest supersymmetric
particle is expected to be unstable. Searches of R-parity violating decays of
charged sleptons, sneutrinos and squarks have been performed under the
assumptions that the lightest supersymmetric particle decays promptly and that
only one of the R-parity violating couplings is dominant for each of the decay
modes considered. Such processes would yield final states consisting of
leptons, jets, or both with or without missing energy. No significant
single-like excess of events has been observed with respect to the Standard
Model expectations. Limits on the production cross- section of scalar fermions
in R-parity violating scenarios are obtained. Constraints on the supersymmetric
particle masses are also presented in an R-parity violating framework analogous
to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.
Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2
The hadronic structure function of the photon F_2^gamma is measured as a
function of Bjorken x and of the factorisation scale Q^2 using data taken by
the OPAL detector at LEP. Previous OPAL measurements of the x dependence of
F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of
F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted
by QCD, the data show positive scaling violations in F_2^gamma. Several
parameterisations of F_2^gamma are in agreement with the measurements whereas
the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001,
Ascona, Switzerlan
Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV
The effects of the final state interaction phenomenon known as colour
reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~
189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to
affect observables based on charged particles in hadronic decays of W+W-.
Measurements of inclusive charged particle multiplicities, and of their angular
distribution with respect to the four jet axes of the events, are used to test
models of colour reconnection. The data are found to exclude extreme scenarios
of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other
models, both with and without colour reconnection effects. In the context of
the SK-I model, the best agreement with data is obtained for a reconnection
probability of 37%. Assuming no colour reconnection, the charged particle
multiplicity in hadronically decaying W bosons is measured to be (nqqch) =
19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.
- …