1,220 research outputs found
Simulation and performance of an artificial retina for 40 MHz track reconstruction
We present the results of a detailed simulation of the artificial retina
pattern-recognition algorithm, designed to reconstruct events with hundreds of
charged-particle tracks in pixel and silicon detectors at LHCb with LHC
crossing frequency of . Performances of the artificial retina
algorithm are assessed using the official Monte Carlo samples of the LHCb
experiment. We found performances for the retina pattern-recognition algorithm
comparable with the full LHCb reconstruction algorithm.Comment: Final draft of WIT proceedings modified according to JINST referee's
comment
The artificial retina for track reconstruction at the LHC crossing rate
We present the results of an R&D study for a specialized processor capable of
precisely reconstructing events with hundreds of charged-particle tracks in
pixel and silicon strip detectors at , thus suitable for
processing LHC events at the full crossing frequency. For this purpose we
design and test a massively parallel pattern-recognition algorithm, inspired to
the current understanding of the mechanisms adopted by the primary visual
cortex of mammals in the early stages of visual-information processing. The
detailed geometry and charged-particle's activity of a large tracking detector
are simulated and used to assess the performance of the artificial retina
algorithm. We find that high-quality tracking in large detectors is possible
with sub-microsecond latencies when the algorithm is implemented in modern,
high-speed, high-bandwidth FPGA devices.Comment: 3 pages, 3 figures, ICHEP14. arXiv admin note: text overlap with
arXiv:1409.089
A Specialized Processor for Track Reconstruction at the LHC Crossing Rate
We present the results of an R&D study of a specialized processor capable of
precisely reconstructing events with hundreds of charged-particle tracks in
pixel detectors at 40 MHz, thus suitable for processing LHC events at the full
crossing frequency. For this purpose we design and test a massively parallel
pattern-recognition algorithm, inspired by studies of the processing of visual
images by the brain as it happens in nature. We find that high-quality tracking
in large detectors is possible with sub-s latencies when this algorithm is
implemented in modern, high-speed, high-bandwidth FPGA devices. This opens a
possibility of making track reconstruction happen transparently as part of the
detector readout.Comment: Presented by G.Punzi at the conference on "Instrumentation for
Colliding Beam Physics" (INSTR14), 24 Feb to 1 Mar 2014, Novosibirsk, Russia.
Submitted to JINST proceeding
First prototype of a silicon tracker using an artificial retina for fast track finding
We report on the R\&D for a first prototype of a silicon tracker based on an
alternative approach for fast track finding. The working principle is inspired
from neurobiology, in particular by the processing of visual images by the
brain as it happens in nature. It is based on extensive parallelisation of data
distribution and pattern recognition. In this work we present the design of a
practical device that consists of a telescope based on single-sided silicon
detectors; we describe the data acquisition system and the implementation of
the track finding algorithms using available digital logic of commercial FPGA
devices. Tracking performance and trigger capabilities of the device are
discussed along with perspectives for future applications.Comment: 9 pages, 7 figures, Technology and Instrumentation in Particle
Physics 2014 (TIPP 2014), conference proceeding
The artificial retina processor for track reconstruction at the LHC crossing rate
We present results of an R&D study for a specialized processor capable of
precisely reconstructing, in pixel detectors, hundreds of charged-particle
tracks from high-energy collisions at 40 MHz rate. We apply a highly parallel
pattern-recognition algorithm, inspired by studies of the processing of visual
images by the brain as it happens in nature, and describe in detail an
efficient hardware implementation in high-speed, high-bandwidth FPGA devices.
This is the first detailed demonstration of reconstruction of offline-quality
tracks at 40 MHz and makes the device suitable for processing Large Hadron
Collider events at the full crossing frequency.Comment: 4th draft of WIT proceedings modified according to JINST referee's
comments. 10 pages, 6 figures, 2 table
The artificial retina for track reconstruction at the LHC crossing rate
We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices
An artificial retina processor for track reconstruction at the LHC crossing rate
The goal of the INFN-RETINA R&D project is to develop and implement a computational methodology that allows to reconstruct events with a large number (> 100) of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus matching the requirements for processing LHC events at the full bunch-crossing frequency. Our approach relies on a parallel pattern-recognition algorithm, dubbed artificial retina, inspired by the early stages of image processing by the brain. In order to demonstrate that a track-processing system based on this algorithm is feasible, we built a sizable prototype of a tracking processor tuned to 3 000 patterns, based on already existing readout boards equipped with Altera Stratix III FPGAs. The detailed geometry and charged-particle activity of a large tracking detector currently in operation are used to assess its performances. We report on the test results with such a prototype
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
- …