306 research outputs found

    IMPLEMENTAZIONE DI TECNICHE DI TERMOGRAFIA ATTIVA IRNDT SU COMPOSITI GRP MEDIANTE LA DEPOSIZIONE DI IMPULSI TERMICI DI LUNGA DURATA

    Get PDF
    Nel presente lavoro viene analizzata l\u2019implementazione di tecniche attive di termografia ad infrarossi per analisi NDT su pannelli in composito. In particolare si propone l\u2019uso di lampade alogene come sorgente di calore esterna, le quali richiedono tempi di accensione dell\u2019ordine di diversi secondi al fine di depositare efficaci quantit\ue0 di calore. Si discutono quindi le problematiche connesse all\u2019implementazione di tecniche di Transient Thermography e di Lock-In Thermography in presenza di tempi lunghi di deposizione di calore. Viene implementata una tecnica di modulazione della deposizione di calore mediante treni di onde quadre di lunga durata (PMLT - Pulse Modulated Lock-In Thermography). Viene in particolare analizzata l\u2019influenza del periodo dell\u2019onda quadra, e del rapporto di acceso-spento del treno di onde quadre, attraverso l\u2019analisi dell\u2019andamento del contrasto di fase al variare della frequenza di correlazione (lock-in frequency)

    Standard mechanical testing is inadequate for the mechanical characterisation of shape-memory alloys: Source of errors and a new corrective approach

    Get PDF
    Thanks to its unique behaviour characterised by a superelastic response, Nitinol has now become the material of preference in a number of critical applications, especially in the area of medical implants. However, the reversible phase transformation producing its exceptional comportment is also responsible for a number of phenomena that make its mechanical characterisation particularly complex, by hindering the assumptions at the very basis of common uniaxial tensile testing. This necessarily reduces the level of safety and design optimization of current applications, which rely on incorrect mechanical parameters. In this study, the spurious effects introduced by the unconventional material behaviour during uniaxial tensile testing are analysed by means of digital image correlation (DIC), identifying the onset of undesirable material inhomogeneities and bending moments that are dependent on the test setup and strongly limit the reliability of standard characterisation. Hence, a more accurate and systematic testing approach, exploiting the ability of DIC to analyse the local mechanical response at specific regions of the test specimen, is presented and discussed

    Using FEM simulation to predict structural performances of a sailing dinghy

    Get PDF
    The use of finite element method (FEM) tools is proposed to investigate the structural response of an eco-sustainable sailing yacht to different loading conditions, typical of those acting during regattas. The boat is, in particular, a 4.60 m dinghy with the hull and the deck made of an hybrid flax\ue2\u80\u93cork sandwich and internal reinforcements made of marine plywood. A preliminary activity has consisted in the refitting of an existing model in order to reduce the hull weight and to improve performances during manoeuvrings. These tasks have been interactively simulated in the virtual environment of the boat CAD model, where longitudinal and transversal reinforcements were enlightened and the maximum beam reduced. At the same time, results of FEM simulations on the modified model were analysed in order to verify the structural integrity. Shape modifications have been applied to the real model in laboratory and the resulting hull has been instrumented with strain gauges and tested under rigging conditions to validate the numerical procedure. Finally, the FEM model was used to predict the response of the boat to loading systems typical of sailing conditions

    Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes

    Get PDF
    With the aim to produce, by a simple and reproducible technique, porous scaffolds potentially employable for tissue engineering purposes, in this work, we have synthesized a methacrylate (MA) copolymer of \u3b1,\u3b2-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) and polylactic acid (PLA). PHEA-PLA-MA has been dissolved in organic solvent at different concentrations in the presence of NaCl particles with different granulometry, and through UV irradiation and further salt leaching technique, various porous scaffolds have been prepared. Obtained samples have been characterized by scanning electron microscopy and their porosity has been evaluated as well as their degradation profile in aqueous medium in the absence or in the presence of esterase from porcine liver. PHEA-PLA-MA scaffold that has shown homogeneous porosity and the best degradation profile has been further characterized to study its mechanical properties along with its capacity to incorporate and to control the release of dexamethasone. Finally, the ability to allow a three-dimensional culture of bovine articular chondrocytes have been also investigate

    Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

    Get PDF
    The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously \u201cyielded\u201d samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the materia

    Investigation of the Thermomechanical Response of Cyclically Loaded NiTi Alloys by Means of Temperature Frequency Domain Analyses

    Get PDF
    Nickel–Titanium (NiTi) shape memory alloys subjected to cyclic loading exhibit reversible temperature changes whose modulation is correlated with the applied load. This reveals the presence of reversible thermomechanical heat sources activated by the applied stresses. One such source is the elastocaloric effect, accounting for the latent heat of Austenite–Martensite phase transformation. It is, however, observed that when the amplitude of cyclic loads is not sufficient to activate or further propagate this phase transformation, the material still exhibits a strong cyclic temperature modulation. The present work investigates the thermomechanical behaviour of NiTi under such low-amplitude cyclic loading. This is carried out by analysing the frequency domain content of temperature sampled over a time window. The amplitude and phase of the most significant harmonics are obtained and compared with the theoretical predictions from the first and second-order theories of the Thermoelastic Effect, this being the typical reversible thermomechanical coupling prevailing under elastic straining. A thin strip of NiTi, exhibiting a fully superelastic behaviour at room temperature, was investigated under low-stress amplitude tensile fatigue cycling. Full-field strain and temperature distributions were obtained by means of Digital Image Correlation and IR Thermography. The work shows that the full field maps of amplitude and phase of the first three significant temperature harmonics carry out many qualitative information about the stress and structural state of the material. It is, though, found that the second-order theory of the Thermoelastic Effect is not fully capable of justifying some of the features of the harmonic response, and further work on the specific nature of thermomechanical heat sources is required for a more quantitative interpretation

    Inulin-iron complexes: A potential treatment of iron deficiency anaemia

    Get PDF
    The aim of this work was that to synthesize macromolecular derivatives based on inulin able to complex iron and useful in the treatment of iron deficiency anaemia. Carboxylated or thiolated/carboxylated inulin derivatives were obtained by single or double step reactions, respectively. The first one was obtained by reaction of inulin (INU) with succinic anhydride (SA) alone obtaining INU-SA derivative; the second one was obtained by the reaction of INU with succinic anhydride and subsequent reaction of INU-SA with cysteine; both derivatives were treated with ferric chloride in order to obtain the INU-SA-Fe-III and INU-SA-Cys-Fe-III complexes. Both complexes showed an excellent biodegradability in the presence of inulinase and pronounced mucoadhesion properties; in particular, thiolated derivative INU-SA-Cys showed greater mucoadhesive properties than polyacrylic acid chosen, as a positive reference polymer, and a good iron release profile in condition mimicking the intestinal tract. These results suggest the potential employment of such systems in the oral treatment of iron deficiency anaemia or as supplement of iron in foods. (c) 2007 Elsevier B.V. All rights reserved

    Investigation of the thermomechanical response of cyclically loaded niti alloys by means of temperature frequency domain analyses

    Get PDF
    Nickel\u2013Titanium (NiTi) shape memory alloys subjected to cyclic loading exhibit reversible temperature changes whose modulation is correlated with the applied load. This reveals the pres-ence of reversible thermomechanical heat sources activated by the applied stresses. One such source is the elastocaloric effect, accounting for the latent heat of Austenite\u2013Martensite phase transfor-mation. It is, however, observed that when the amplitude of cyclic loads is not sufficient to activate or further propagate this phase transformation, the material still exhibits a strong cyclic temperature modulation. The present work investigates the thermomechanical behaviour of NiTi under such low-amplitude cyclic loading. This is carried out by analysing the frequency domain content of temperature sampled over a time window. The amplitude and phase of the most significant harmonics are obtained and compared with the theoretical predictions from the first and second-order theories of the Thermoelastic Effect, this being the typical reversible thermomechanical coupling prevailing under elastic straining. A thin strip of NiTi, exhibiting a fully superelastic behaviour at room temperature, was investigated under low-stress amplitude tensile fatigue cycling. Full-field strain and temperature distributions were obtained by means of Digital Image Correlation and IR Thermography. The work shows that the full field maps of amplitude and phase of the first three significant temperature harmonics carry out many qualitative information about the stress and structural state of the material. It is, though, found that the second-order theory of the Thermoelastic Effect is not fully capable of justifying some of the features of the harmonic response, and further work on the specific nature of thermomechanical heat sources is required for a more quantitative interpretation

    New graft copolymers of hyaluronic acid and polylactic acid: Synthesis and characterization

    Get PDF
    New graft copolymers have been synthesized, using hyaluronic acid (HA) as a hydrophilic backbone and polylactic acid (PLA) as an aliphatic polyester in order to obtain new polymeric derivatives of HA able to hydrophobically associate in an aqueous medium. Hyaluronic acid with low molecular weight was made soluble in organic solvent by transformation to its tetrabutylammonium (TBA) salt. Using the HA-TBA derivative, the reaction was performed in dimethylsulfoxide adding as a reagent the N-hydroxysuccinimide derivative of PLA. Two HA-PLA graft copolymers have been synthesized and characterized by FT-IR, H-1 NMR spectroscopy and gel permeation chromatography. The interaction between these samples and an aqueous medium has been evaluated by rheological measurements. The obtained data evidenced that both HA-PLA graft copolymers show in aqueous medium a clear tendency for hydrophobic interaction dependent on the amount of PLA chains linked to the HA backbone. (c) 2006 Elsevier Ltd. All rights reserved

    The durability of carbon fiber/epoxy composites under hydrothermal ageing

    Get PDF
    Studies on fibre reinforced composites are now receiving greater attention. Industrial applications have been successful in areas like aerospace, automobile, marine, construction and sporting goods. The first generation of epoxy resins for use in carbon fibre composites are able to achieve optimized high stiffness modules and high heat resistance by a high crosslink density, reached through thermal curing. However, these formulations can be very toxic and brittle with low crack resistance, which was a major disadvantage for structural applications. In the last years the use of ionizing radiation as alternative to thermal curing has been proposed as an environmentally friendly process. Furthermore, in order to enhance toughness mechanical requirements for their applications, the formulation generally consists of blends of epoxy resins and engineering thermoplastics. In terms of durability (service life and reliability), in these materials it depends on different environmental conditions (temperature, moisture, etc.), and it is very important to know how their properties are modified after the exposure to different temperature and moisture absorption cycles. In this work carbon fibre composites produced by ionizing radiation induced curing of the epoxy based matrices have been subjected to thermal and moisture absorption ageing and the influence of these treatments on the thermal and mechanical properties has been investigated through dynamic mechanical thermal analysis and mechanical fracture toughness tests
    • …
    corecore