15 research outputs found

    Constraint on foreland basin migration in the Zagros mountain belt using Sr isotope stratigraphy

    Get PDF
    We have constrained the time-space migration of the Zagros foredeep basin by performing Sr isotope stratigraphy on 31 samples of marine macrofossils from Neogene sediments now exposed in the Zagros mountain belt in southwest Iran. Our results show that these deposits (represented mainly by the Mishan Formation) are strongly diachronous, with ages ranging between 17.2 ± 0.2 and 1.1 ± 0.1 Ma. These deposits are older in the west (Dezful region) and become progressively younger towards the south and the south-east (Fars region). Our results show that the marine foredeep was replaced by a fluvial sedimentary environment between ca. 14 and 12 Ma in the western sector, while this occurred between ca. 8 and 1 Ma in the eastern sector, becoming younger towards the south. These results enable us to show that the foreland basin migrated perpendicular to the orogen at rates of between 17.5 and 50 mm year^(1) throughout the Neogene, exceeding migration rates in the Alps, Pyrenees, Apennines and Himalayan foreland basins. The sporadically elevated rates in the Zagros appear to be related to times when major widely spaced pre-existing basement faults became reactivated. Finally, our results, when combined with published data, have enabled us to establish a new chronostratigraphic diagram for the Neogene portion of the Zagros foreland basin. Our study highlights that foreland basins are extremely dynamic settings where depocentres and palaeoenvironments may change rapidly in both time and space in relation to migrating deformation

    Neogene sediments and modern depositional environments of the Zagros foreland basin system

    Get PDF
    A sedimentological investigation of the Neogene deposits of the Zagros foreland basin in SW Iran reveals a continuous and largely gradational passage from supratidal and sabkha sediments at the base (represented by the Gachsaran Formation) to carbonates and marine marls (Mishan Formation with basal Guri carbonate member) followed by coastal plain and meandering river deposits (Agha Jari Formation) and finally to braided river gravel sheets (Bakhtyari Formation). This vertical succession is interpreted to represent the southward migration of foreland basin depozones (from distal foredeep and foredeep to distal wedge-top and proximal wedge-top, respectively) as the Zagros fold-thrust belt migrated progressively southward towards the Arabian foreland. This vertical succession bears a striking similarity to modern depositional environments and sedimentary deposits observed in the Zagros region today, where one passes from mainly braided rivers in the Zagros Mountains to meandering rivers close to the coast, to shallow marine clastic sediments along the northern part of the Persian Gulf and finally to carbonate ramp and sabkha deposits along the southeastern coast of the Persian Gulf. This link between the Neogene succession and the modern-day depositional environments strongly suggests that the major Neogene formations of the Zagros foreland basin are strongly diachronous (as shown recently by others) and have active modern-day equivalent

    Flexural bending of the Zagros foreland basin

    Get PDF
    We constrain and model the geometry of the Zagros foreland to assess the equivalent elastic thickness of the northern edge of the Arabian plate and the loads that have originated due to the Arabia–Eurasia collision. The Oligo-Miocene Asmari formation, and its equivalents in Iraq and Syria, is used to estimate the post-collisional subsidence as they separate passive margin sediments from the younger foreland deposits. The depth to these formations is obtained by synthesizing a large database of well logs, seismic profiles and structural sections from the Mesopotamian basin and the Persian Gulf. The foreland depth varies along strike of the Zagros wedge between 1 and 6 km. The foreland is deepest beneath the Dezful embayment, in southwest Iran, and becomes shallower towards both ends. We investigate how the geometry of the foreland relates to the range topography loading based on simple flexural models. Deflection of the Arabian plate is modelled using point load distribution and convolution technique. The results show that the foreland depth is well predicted with a flexural model which assumes loading by the basin sedimentary fill, and thickened crust of the Zagros. The model also predicts a Moho depth consistent with Free-Air anomalies over the foreland and Zagros wedge. The equivalent elastic thickness of the flexed Arabian lithosphere is estimated to be ca. 50 km. We conclude that other sources of loading of the lithosphere, either related to the density variations (e.g. due to a possible lithospheric root) or dynamic origin (e.g. due to sublithospheric mantle flow or lithospheric buckling) have a negligible influence on the foreland geometry, Moho depth and topography of the Zagros. We calculate the shortening across the Zagros assuming conservation of crustal mass during deformation, trapping of all the sediments eroded from the range in the foreland, and an initial crustal thickness of 38 km. This calculation implies a minimum of 126 ± 18 km of crustal shortening due to ophiolite obduction and post-collisional shortening

    Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening

    Get PDF
    We study the transition from passive margin to foreland basin sedimentation now exposed in the High Zagros belt to provide chronological constraints on the initial stage of Arabia–Eurasia collision and closure of the Neo-Tethys. We performed magnetostratigraphy and strontium isotope stratigraphy along two sections near the Zagros suture which expose the oldest preserved foreland deposits: the Shalamzar section in the west and the Dehmoord section in the east. The top of the passive margin Asmari formation has an age of 28–29 Ma in the High Zagros and is overlain by foreland deposits with a major basal unconformity representing 7 Myr of hiatus. The base of the foreland deposits has an age of 21.5 Ma at Dehmoord and ca. 26 Ma at Shalamzar. The sedimentation rate increased from 30 m/Myr in the passive margin to 247 m/Myr in the foreland. Combined with available age constraints across the Zagros, our results show that the unconformity is diachronous and records the southwestward migration of the flexural bulge within the Arabian plate at an average rate of 24 ± 2 mm/yr over the last 27 Ma. The time evolution of sediment accumulation in the Zagros foreland follows the prediction from a flexural model, as the foreland is thrust beneath the orogenic wedge and loaded by the wedge and basin fill. We detect the onset of forebulge formation within the Asmari Formation around 25 Ma. We conclude that closure of the Neo-Tethys formed the Zagros collisional wedge at 27 ± 2 Ma. Hence, the Arabia–Eurasia collision was probably not the main driver of global cooling which started near the Eocene–Oligocene boundary (ca. 33.7 Ma). We estimate 650 km of forebulge migration since the onset of the collision which consists of 350 km of shortening across the orogen, and 300 km of widening of the wedge and increasing flexural rigidity of Arabia. We conclude the average rate of shortening across the Zagros to be ca. 13 mm/yr over the last 27 Myr; a value comparable to the modern rate. Palinspastic restoration of structural cross-sections and crustal volume conservation comprise only ca. 200 km of shortening across the Zagros and metamorphic Sanandaj–Sirjan belt implying that at least 150 km of the Arabian crust was underthrust beneath Eurasia without contributing to crustal thickening, possibly due to eclogitization

    Post-collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting

    No full text
    Detailed sedimentology of the Neogene foreland basin deposits is investigated and classified into 11 lithofacies associations with respect to their paleo-sedimentary environments. The foreland deposits reveal a single coarsening-upward mega-sequence with continuous passage from back-bulge to forebulge, foredeep, and wedge-top sedimentary environments. The Gachsaran deposits form the base of the foreland strata and consist mainly of three different lithofacies associations including fluvial, marine, and sabkha deposits in the eastern Zagros in Fars, and are typically dominated with evaporites toward the west in the Dezful and Kirkuk embayments. The Mishan Formation has three different shallow-marine lithofacies associations in a vertical succession representing foredeep deposits in the eastern Zagros, which tapers toward the Dezful embayment and disappears in Iraq. The Agha Jari distal wedge-top deposits also contain three different lithofacies associations including delta deposits mostly in the Fars, tidal flat deposits in Dezful and Mesopotamia basin, and continental fluvial deposits across the entire Zagros. The uppermost synorogenic Bakhtiari Formation represents proximal wedge-top deposits and consists mainly of two main lithofacies associations including shallow marine and fluvial deposits, within which the fluvial succession is divided into three sub-lithofacies associations with respect to distance from the mountain front and hydraulic power of the river networks. Synthetizing sedimentary facies association with age constraints of the old foreland deposits near the Zagros suture in the High Zagros area suggests that a considerable part of the Arabian plate has been removed at the northern edge by underthrusting and erosion. Moreover, preservation of the young distal foreland deposits near the suture in the western Zagros implies that the magnitude and rate of removal of the proximal foreland deposits have been inconstant along-strike the belt and decreases toward the east

    Post-collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting

    No full text
    Detailed sedimentology of the Neogene foreland basin deposits is investigated and classified into 11 lithofacies associations with respect to their paleo-sedimentary environments. The foreland deposits reveal a single coarsening-upward mega-sequence with continuous passage from back-bulge to forebulge, foredeep, and wedge-top sedimentary environments. The Gachsaran deposits form the base of the foreland strata and consist mainly of three different lithofacies associations including fluvial, marine, and sabkha deposits in the eastern Zagros in Fars, and are typically dominated with evaporites toward the west in the Dezful and Kirkuk embayments. The Mishan Formation has three different shallow-marine lithofacies associations in a vertical succession representing foredeep deposits in the eastern Zagros, which tapers toward the Dezful embayment and disappears in Iraq. The Agha Jari distal wedge-top deposits also contain three different lithofacies associations including delta deposits mostly in the Fars, tidal flat deposits in Dezful and Mesopotamia basin, and continental fluvial deposits across the entire Zagros. The uppermost synorogenic Bakhtiari Formation represents proximal wedge-top deposits and consists mainly of two main lithofacies associations including shallow marine and fluvial deposits, within which the fluvial succession is divided into three sub-lithofacies associations with respect to distance from the mountain front and hydraulic power of the river networks. Synthetizing sedimentary facies association with age constraints of the old foreland deposits near the Zagros suture in the High Zagros area suggests that a considerable part of the Arabian plate has been removed at the northern edge by underthrusting and erosion. Moreover, preservation of the young distal foreland deposits near the suture in the western Zagros implies that the magnitude and rate of removal of the proximal foreland deposits have been inconstant along-strike the belt and decreases toward the east

    The geometry and sedimentary record of tectonics in the Neogene Zagros foreland basin

    No full text
    In this thesis, we investigate the architecture and evolution of the Zagros fold-thrust belt foreland basin system in time and space during the Neogene by measuring the 87Sr/86Sr ratio of the marine deposits and creating 3D geological-structural modelling. The results show that tectonics played a significant role in controlling stratigraphy by changing the amount of accommodation space and sediment supply. The created accommodation space is completely filled due to a high sediment supply in the western part of the Zagros as a result of high rates of surface processes in a narrow zone of deformation linked to a strong basal detachment and relatively wet climatic conditions. In contrast, the eastern part is remained underfilled because of a smaller sediment supply due to the basal Hormuz salt, which leads to a wide deformation belt with low topography, low surface slopes and subsequently low sediment supply, along with drier climatic conditions

    Factors controlling the spatial distribution of landslides in the Zagros region (Iran)

    No full text
    We investigated 335 landslides (including rockslides, rock avalanches, soil slides, and slides) in the Zagros mountain belt of southwest Iran using a digital elevation model (DEM) with 30 m resolution, Google EarthTM images, and field investigation. Individual landslides have volumes ranging from 10**4 (the lower limit of resolution) to 3 Ă— 10**10 m**3 and cover surface areas ranging from 10**3 to 10**8 m**2. The relationship between landslide volume (VL) and area (AL) is well described by a power law of the form VL = AL**alpha, where alpha = 1.49 over five orders of magnitude of AL and seven orders of magnitude of VL. We also show that the frequency-size (i.e., volume) distribution is heavy tailed, following a power law for the largest landslides (>10**7 m**3) with a scaling exponent beta = 1.51. Non-power-law behavior for smaller landslides is probably an artifact due to the relatively low resolution of our data, such that we are essentially missing many small landslides. Comparison of these results with the other published data sets around the globe shows that the Zagros landslides are relatively larger, and they show similar scaling behavior to those observed in other regions, especially with regard to data sets where landslides are deep-seated or relatively large and occur in relatively resistant materials (e.g., consolidated rocks, as opposed to soil). In addition, we used principal component analysis (PCA) to investigate links between the size of landslides and causative factors (e.g., geological, geomorphological, and physical factors). Our results highlight that although the size of landslides is not controlled by any single factor, their geographic distribution is strongly influenced by lithology, elevation, and slope
    corecore