33 research outputs found

    Metastatic phenotype and immunosuppressive tumour microenvironment in pancreatic ductal adenocarcinoma: Key role of the urokinase plasminogen activator (PLAU)

    Get PDF
    BackgroundPrevious studies have revealed the role of dysregulated urokinase plasminogen activator (encoded by PLAU) expression and activity in several pathways associated with cancer progression. However, systematic investigation into the association of PLAU expression with factors that modulate PDAC (pancreatic ductal adenocarcinoma) progression is lacking, such as those affecting stromal (pancreatic stellate cell, PSC)-cancer cell interactions, tumour immunity, PDAC subtypes and clinical outcomes from potential PLAU inhibition.MethodsThis study used an integrated bioinformatics approach to identify prognostic markers correlated with PLAU expression using different transcriptomics, proteomics, and clinical data sets. We then determined the association of dysregulated PLAU and correlated signatures with oncogenic pathways, metastatic phenotypes, stroma, immunosuppressive tumour microenvironment (TME) and clinical outcome. Finally, using an in vivo orthotopic model of pancreatic cancer, we confirmed the predicted effect of inhibiting PLAU on tumour growth and metastasis.ResultsOur analyses revealed that PLAU upregulation is not only associated with numerous other prognostic markers but also associated with the activation of various oncogenic signalling pathways, aggressive phenotypes relevant to PDAC growth and metastasis, such as proliferation, epithelial-mesenchymal transition (EMT), stemness, hypoxia, extracellular cell matrix (ECM) degradation, upregulation of stromal signatures, and immune suppression in the tumour microenvironment (TME). Moreover, the upregulation of PLAU was directly connected with signalling pathways known to mediate PSC-cancer cell interactions. Furthermore, PLAU upregulation was associated with the aggressive basal/squamous phenotype of PDAC and significantly reduced overall survival, indicating that this subset of patients may benefit from therapeutic interventions to inhibit PLAU activity. Our studies with a clinically relevant orthotopic pancreatic model showed that even short-term PLAU inhibition is sufficient to significantly halt tumour growth and, importantly, eliminate visible metastasis.ConclusionElevated PLAU correlates with increased aggressive phenotypes, stromal score, and immune suppression in PDAC. PLAU upregulation is also closely associated with the basal subtype type of PDAC; patients with this subtype are at high risk of mortality from the disease and may benefit from therapeutic targeting of PLAU

    Molecular mechanisms of alcoholic pancreatitis

    No full text
    Alcoholic pancreatitis is a major complication of alcohol abuse. Since only a minority of alcoholics develop pancreatitis, there has been a keen interest in identifying the factors that may confer individual susceptibility to the disease. Numerous possibilities have been evaluated including diet, drinking patterns and a range of inherited factors. However, at the present time, no susceptibility factor has been unequivocally identified. In contrast, considerable progress has been made with respect to the constant effects of alcohol on the pancreas. The molecular mechanisms of alcohol-induced pancreatic injury are being increasingly defined with an emphasis, in recent years, on the acinar cell itself as the principal site on ethanol-related damage. It has now been established that the acinar cell is capable of metabolizing alcohol and that the direct toxic effects of alcohol and/or its metabolites on acinar cells may predispose the gland to autodigestive injury in the presence of an appropriate triggering factor. A significant recent development relates to the characterization of pancreatic stellate cells, increasingly implicated in alcoholic pancreatic fibrosis. Here the current concepts regarding the mechanisms/pathways mediating alcohol-induced pancreatic injury are outlined

    Individual susceptibility to alcoholic pancreatitis

    No full text
    The observation that only a minority of heavy drinkers develop pancreatitis has prompted an intensive search for a trigger factor/cofactor/susceptibility factor that may precipitate a clinical attack. Putative susceptibility factors examined so far include diet, smoking, amount and type of alcohol consumed, the pattern of drinking and lipid intolerance. In addition, a range of inherited factors have been assessed including blood group antigens, human leukocyte antigen serotypes, alpha-1-antitrypsin phenotypes and several genotypes. The latter group comprises mutations/polymorphisms in genes related to alcohol-metabolizing enzymes, detoxifying enzymes, pancreatic digestive enzymes, pancreatic enzyme inhibitors, cystic fibrosis and cytokines. Disappointingly, despite this concerted research effort, no clear association has been established between the above factors and alcoholic pancreatitis. Experimentally, the secretagogue cholecystokinin (CCK) has been investigated as a candidate ‘trigger’ for alcoholic pancreatitis. However, the clinical relevance of CCK as a trigger factor has to be questioned, as it is difficult to envisage a situation in humans where abnormally high levels of CCK would be released into the circulation to trigger pancreatitis in alcoholics. In contrast, bacterial endotoxemia is a candidate cofactor that does have relevance to the clinical situation. Plasma lipopolysaccharide (LPS, an endotoxin) levels are significantly higher in drinkers (either after chronic alcohol intake or a single binge) compared to non-drinkers. We have recently shown that alcohol-fed animals challenged with otherwise innocuous doses of LPS exhibit significant pancreatic injury. Moreover, repeated LPS exposure in alcohol-fed rats leads to progressive injury to the gland characterized by significant pancreatic fibrosis. These studies support the concept that endotoxin may be an important factor in the initiation and progression of alcoholic pancreatitis. Scope remains for further studies examining proteins related to cellular anti-oxidant defenses, minor cystic fibrosis (CF) mutations and trans-heterozygosity involving a combination of mutations of different genes (such as CFTR alterations combined with SPINK1 or PRSS1 variants), as potential triggers of alcoholic pancreatitis. Apte, M. V., Pirola, R. C., & Wilson, J. S. (2008). Individual susceptibility to alcoholic pancreatitis. Journal of Gastroenterology and Hepatology, 23(S1), S63-S68. doi:10.1111/j.1440-1746.2007.05287.

    Etiopathogenesis And Epidemiology Of Alcohol-Induced Acute Pancreatitis

    No full text
    The most encyclopedic book on the pancreas - providing clear guidance for practicing clinicians & surgeons. In the past decade, extraordinary developments in diagnostic and therapeutic radiology and endoscopy have been coupled with major advances in surgical techniques and basic sciences. As a result the management of pancreatic disorders is now handled by a multidisciplinary team. This book shows you how to achieve superior patient management by taking the team approach to in-hospital care. [Excerpt from publisher\u27s website] ISBN: 978-1-4051-4664-

    Where there’s smoke there’s not necessarily fire

    No full text
    Although alcohol abuse is a major association of chronic pancreatitis, it is well known that only a minority of heavy drinkers develop clinically evident pancreatitis.1,2 This observation has led to a sustained effort to identify factors that may increase the susceptibility of alcoholics to the development and progression of the disease. One of the candidate susceptibility factors is smoking. The interest in smoking as a risk factor for the development and accelerated progression of alcoholic pancreatitis is understandable given that a number of smoking/nicotine related effects on the pancreas have been described in the literature. High concentrations of nicotine have been shown to increase pancreatic protein synthesis in isolated acini.3 Nicotine has also been shown to induce vacuolisation and nuclear pyknosis in acinar cells.4 Serum levels of pancreatic enzymes are reported to be significantly increased in smokers after intravenous secretin.5–7 In addition, in vivo and in vitro studies have demonstrated that smoking significantly inhibits pancreatic secretion.8,9 The concept that smoking enhances the toxic effects of alcohol on the pancreas was examined in a recent experimental study where cigarette smoke was administered to anaesthetised rats receiving intravenous ethanol; the

    Pancreatic MAP kinase pathways and acetaldehyde

    No full text
    Acetaldehyde-Related Pathology describes the toxic effects of acetaldehyde at the tissue and cellular levels, reviewing enzyme biochemistry, transgenic mouse models of alcohol dehydrogenase mutants, and the cell-signalling pathways implicated in alcohol-related pathology. It explores the mechanisms of acetaldehyde-induced damage to tissues, often a first step in carcinogenesis, including the oral cavity, the human airway, and the GI tract. The book considers pharmacological strategies and treatments for reducing oral and intestinal acetaldehyde. Acetaldehyde-Related Pathology features in-depth, round-table discussions by an international array of scientists from major laboratories worldwide involved in studies of acetaldehyde-related pathology. [From publisher\u27s website] ISBN: 978047005766

    Role of alcohol metabolism in chronic pancreatitis

    Get PDF
    Alcohol abuse is the major cause of chronic inflammation of the pancreas (i.e., chronic pancreatitis). Although it has long been thought that alcoholic pancreatitis is a chronic disease from the outset, evidence is accumulating to indicate that chronic damage in the pancreas may result from repeated attacks of acute tissue inflammation and death (i.e., necroinflammation). Initially, research into the pathogenesis of alcoholic pancreatitis was related to ductular and sphincteric abnormalities. In recent years, the focus has shifted to the type of pancreas cell that produces digestive juices (i.e., acinar cell). Alcohol now is known to exert a number of toxic effects on acinar cells. Notably, acinar cells have been shown to metabolize alcohol (i.e., ethanol) via both oxidative (i.e., involving oxygen) and nonoxidative pathways. The isolation and study of pancreatic stellate cells (PSCs)—the key effectors in the development of connective tissue fibers (i.e., fibrogenesis) in the pancreas—has greatly enhanced our understanding of the pathogenesis of chronic pancreatitis. Pancreatic stellate cells become activated in response to ethanol and acetaldehyde, a toxic byproduct of alcohol metabolism. In addition, PSCs have the capacity to metabolize alcohol via alcohol dehydrogenase (the major oxidizing enzyme for ethanol). The fact that only a small percentage of heavy alcoholics develop chronic pancreatitis has led to the search for precipitating factors of the disease. Several studies have investigated whether variations in ethanol-metabolizing enzymes may be a trigger factor for chronic pancreatitis, but no definite relationship has been established so far

    Pancreatic stellate cells and pancreatic cancer cells: An unholy alliance

    No full text
    Pancreatic cancer—a tumor displaying a particularly abundant stromal reaction—is notorious for its poor prognosis. Recent studies, via newly developed orthotopic models, provide compelling evidence of an important role for pancreatic stellate cells (PSC) in pancreatic cancer progression. Characterization of the mechanisms mediating PSC-cancer interactions will lead to the development of much needed alternative therapeutic approaches to improve disease outcome

    Withdrawal of alcohol promotes regression while continued alcohol intake promotes persistence of LPS-induced pancreatic injury in alcohol-fed rats

    No full text
    Background and aims: Administration of repeated lipopolysaccharide (LPS) injections in alcohol-fed rats leads to significant pancreatic injury including fibrosis. However, it remains unknown whether alcoholic (chronic) pancreatitis has the potential to regress when alcohol is withdrawn. The aims of the study were (1) to compare the effect of alcohol withdrawal/continuation on pancreatic acute injury and fibrosis; and (2) to assess the effects of alcohol ± LPS on pancreatic stellate cell (PSC) apoptosis in vivo and in vitro. Methods: Rats fed isocaloric Lieber–DeCarli liquid diets ± alcohol for 10 weeks were challenged with LPS (3 mg/kg/week for 3 weeks) and then either switched to control diet or maintained on an alcohol diet for 3 days, 7 days or 3 weeks. Pancreatic sections were assessed for acute tissue injury, fibrosis, PSC apoptosis and activation. Cultured rat PSCs were exposed to 10 mM ethanol ± 1 μg/ml LPS for 48 or 72 h and apoptosis was assessed (Annexin V, caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)). Results: Withdrawal of alcohol led to resolution of pancreatic lesions including fibrosis and to increased PSC apoptosis. Continued alcohol administration perpetuated pancreatic injury and prevented PSC apoptosis. Alcohol and LPS significantly inhibited PSC apoptosis in vitro, and the effect of LPS on PSC apoptosis could be blocked by Toll-like receptor 4 small interfering RNA. Conclusions: Induction of PSC apoptosis upon alcohol withdrawal is a key mechanism mediating the resolution of pancreatic fibrosis. Conversely, continued alcohol intake perpetuates pancreatic injury by inhibiting apoptosis and promoting activation of PSCs. Characterisation of the pathways mediating PSC apoptosis has the potential to yield novel therapeutic strategies for chronic pancreatitis
    corecore