5 research outputs found
Non-thermal radiative pair plasmas: processes and spectra
We study the emission and absorption spectra due to various photon and pair
processes in a non-equilibrium pair plasma containing a significant density of
photons. We present here some preliminary results from Monte-Carlo simulations.
These investigations are likely to be useful in understanding the radiation and
relaxation mechanisms in non-thermal gamma-ray sources in astrophysics.Comment: 5 pages, uuencoded postscript fil
Emission Spectra from Internal Shocks in Gamma-Ray-Burst Sources
Unsteady activity of gamma-ray burst sources leads to internal shocks in
their emergent relativistic wind. We study the emission spectra from such
shocks, assuming that they produce a power-law distribution of relativistic
electrons and posses strong magnetic fields. The synchrotron radiation emitted
by the accelerated electrons is Compton up-scattered multiple times by the same
electrons. A substantial component of the scattered photons acquires high
energies and produces e+e- pairs. The pairs transfer back their kinetic energy
to the radiation through Compton scattering. The generic spectral signature
from pair creation and multiple Compton scattering is highly sensitive to the
radius at which the shock dissipation takes place and to the Lorentz factor of
the wind. The entire emission spectrum extends over a wide range of photon
energies, from the optical regime up to TeV energies. For reasonable values of
the wind parameters, the calculated spectrum is found to be in good agreement
with the burst spectra observed by BATSE.Comment: 12 pages, latex, 2 figures, submitted to ApJ
Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method
A new algorithm for implementing the adaptive Monte Carlo method is given. It
is used to solve the relativistic Boltzmann equations that describe the time
evolution of a nonequilibrium electron-positron pair plasma containing
high-energy photons and pairs. The collision kernels for the photons as well as
pairs are constructed for Compton scattering, pair annihilation and creation,
bremsstrahlung, and Bhabha & Moller scattering. For a homogeneous and isotropic
plasma, analytical equilibrium solutions are obtained in terms of the initial
conditions. For two non-equilibrium models, the time evolution of the photon
and pair spectra is determined using the new method. The asymptotic numerical
solutions are found to be in a good agreement with the analytical equilibrium
states. Astrophysical applications of this scheme are discussed.Comment: 43 pages, 7 postscript figures, to appear in the Astrophysical
Journa