103 research outputs found
Screening for cognition in amyotrophic lateral sclerosis: test characteristics of a new screen
Cognitive and behavioural impairment in amyotrophic lateral sclerosis (ALS) negatively influences the quality of life and survival, and, therefore, screening for these impairments is recommended. We developed a cognitive screening tool, the amyotrophic lateral sclerosisâfrontotemporal dementiaâcognitive screen (ALSâFTDâCog) and aimed to validate it in patients with ALS. During the current study, the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was published and we, therefore, decided to compare these two cognitive screening methods. The ALSâFTDâCog was administered to 72 patients with ALS, 21 patients with behavioural variant FTD (bvFTD) and 34 healthy controls. Twenty-nine patients with ALS underwent the ECAS. ROC curve analyses were performed and sensitivity and specificity of the ALSâFTDâCog and ECAS were calculated, with a neuropsychological examination (NPE) as the gold standard. Cognitive impairment was present in 28% of patients with ALS. ROC curve analyses of the ALSâFTDâCog and ECAS showed an area under the curve (AUC) of 0.72 (95% CI 0.58â0.86) and 0.95 (95% CI 0.86â1.03), respectively. Compared to a full NPE, sensitivity and specificity of the ALSâFTDâCog were 65.0% and 63.5% and of the ECAS 83.3% and 91.3%, respectively. The sensitivity and specificity of the ALSâFTDâCog in patients with bvFTD were 94.4% and 100%, respectively. Test characteristics of the ALSâFTDâCog were moderate, suggesting restricted practical value, as compared to a comprehensive NPE. The ECAS had an excellent AUC and high sensitivity and specificity, indicating that it is a valid screening instrument for cognitive impairment in ALS
Longitudinal changes in qualitative aspects of semantic fluency in presymptomatic and prodromal genetic frontotemporal dementia
Background: The semantic fluency test is one of the most widely used neuropsychological tests in dementia diagnosis. Research utilizing the qualitative, psycholinguistic information embedded in its output is currently underexplored in presymptomatic and prodromal genetic FTD. Methods: Presymptomatic MAPT (n = 20) and GRN (n = 43) mutation carriers, and controls (n = 55) underwent up to 6Â years of neuropsychological assessment, including the semantic fluency test. Ten mutation carriers became symptomatic (phenoconverters). Total score and five qualitative fluency measures (lexical frequency, age of acquisition, number of clusters, cluster size, number of switches) were calculated. We used multilevel linear regression modeling to investigate longitudinal decline. We assessed the co-correlation of the qualitative measures at each time point with principal component analysis. We explored associations with cognitive decline and grey matter atrophy using partial correlations, and investigated classification abilities using binary logistic regression. Results: The interrater reliability of the qualitative measures was good (ICC = 0.75â0.90). There was strong co-correlation between lexical frequency and age of acquisition, and between clustering and switching. At least 4Â years pre-phenoconversion, GRN phenoconverters had fewer but larger clusters (p < 0.001), and fewer switches (p = 0.004), correlating with lower executive function (r = 0.87â0.98). Fewer switches was predictive of phenoconversion, correctly classifying 90.3%. Starting at least 4Â years pre-phenoconversion, MAPT phenoconverters demonstrated an increase in lexical frequency (p = 0.009) and a decline in age of acquisition (p = 0.034), correlating with lower semantic processing (r = 0.90). Smaller cluster size was predictive of phenoconversion, correctly classifying 89.3%. Increase in lexical frequency and decline in age of acquisition were associated with grey matter volume loss of predominantly temporal areas, while decline in the number of clusters, cluster size, and switches correlated with grey matter volume loss of predominantly frontal areas. Conclusions: Qualitative aspects of semantic fluency could give insight into the underlying mechanisms as to why the âtraditionalâ total score declines in the different FTD mutations. However, the qualitative measures currently demonstrate more fluctuation than the total score, the measure that seems to most reliably deteriorate with time. Replication in a larger sample of FTD phenoconverters is warranted to identify if qualitative measures could be sensitive cognitive biomarkers to identify and track mutation carriers converting to the symptomatic stage of FTD.</p
Impact of sharing Alzheimer's disease biomarkers with individuals without dementia:A systematic review and meta-analysis of empirical data
Introduction: We conducted a systematic literature review and meta-analysis of empirical evidence on expected and experienced implications of sharing Alzheimer's disease (AD) biomarker results with individuals without dementia. Methods: PubMed, Embase, APA PsycInfo, and Web of Science Core Collection were searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results from included studies were synthesized, and quantitative data on psychosocial impact were meta-analyzed using a random-effects model. Results: We included 35 publications. Most personal stakeholders expressed interest in biomarker assessment. Learning negative biomarker results led to relief and sometimes frustration, while positive biomarkers induced anxiety but also clarity. Meta-analysis of five studies including 2012 participants (elevated amyloid = 1324 [66%], asymptomatic = 1855 [92%]) showed short-term psychological impact was not significant (random-effect estimate = 0.10, standard error = 0.23, P = 0.65). Most professional stakeholders valued biomarker testing, although attitudes and practices varied considerably. Discussion: Interest in AD biomarker testing was high and sharing their results did not cause psychological harm. Highlights: Most personal stakeholders expressed interest in Alzheimer's disease biomarker assessment. Personal motivations included gaining insight, improving lifestyle, or preparing for the future. There was no short-term psychological impact of sharing biomarker status, implying it can be safe. Most professional stakeholders valued biomarker testing, believing the benefits outweigh the risk. Harmonized guidelines on biomarker testing and sharing results are required.</p
Longitudinal changes in qualitative aspects of semantic fluency in presymptomatic and prodromal genetic frontotemporal dementia
Background: The semantic fluency test is one of the most widely used neuropsychological tests in dementia diagnosis. Research utilizing the qualitative, psycholinguistic information embedded in its output is currently underexplored in presymptomatic and prodromal genetic FTD. Methods: Presymptomatic MAPT (n = 20) and GRN (n = 43) mutation carriers, and controls (n = 55) underwent up to 6Â years of neuropsychological assessment, including the semantic fluency test. Ten mutation carriers became symptomatic (phenoconverters). Total score and five qualitative fluency measures (lexical frequency, age of acquisition, number of clusters, cluster size, number of switches) were calculated. We used multilevel linear regression modeling to investigate longitudinal decline. We assessed the co-correlation of the qualitative measures at each time point with principal component analysis. We explored associations with cognitive decline and grey matter atrophy using partial correlations, and investigated classification abilities using binary logistic regression. Results: The interrater reliability of the qualitative measures was good (ICC = 0.75â0.90). There was strong co-correlation between lexical frequency and age of acquisition, and between clustering and switching. At least 4Â years pre-phenoconversion, GRN phenoconverters had fewer but larger clusters (p < 0.001), and fewer switches (p = 0.004), correlating with lower executive function (r = 0.87â0.98). Fewer switches was predictive of phenoconversion, correctly classifying 90.3%. Starting at least 4Â years pre-phenoconversion, MAPT phenoconverters demonstrated an increase in lexical frequency (p = 0.009) and a decline in age of acquisition (p = 0.034), correlating with lower semantic processing (r = 0.90). Smaller cluster size was predictive of phenoconversion, correctly classifying 89.3%. Increase in lexical frequency and decline in age of acquisition were associated with grey matter volume loss of predominantly temporal areas, while decline in the number of clusters, cluster size, and switches correlated with grey matter volume loss of predominantly frontal areas. Conclusions: Qualitative aspects of semantic fluency could give insight into the underlying mechanisms as to why the âtraditionalâ total score declines in the different FTD mutations. However, the qualitative measures currently demonstrate more fluctuation than the total score, the measure that seems to most reliably deteriorate with time. Replication in a larger sample of FTD phenoconverters is warranted to identify if qualitative measures could be sensitive cognitive biomarkers to identify and track mutation carriers converting to the symptomatic stage of FTD.</p
Differences in sex distribution between genetic and sporadic FTD
AbstractBackgroundThe reported sex distribution differs between frontotemporal dementia (FTD) cohorts. Possible explanations are the evolving clinical criteria of FTD and its subtypes and the discovery of FTD causal genetic mutations that have resulted in variable findings. Our aim was to determine the sex distribution in a large international retrospective cohort of sporadic and genetic FTD.MethodWe included patients with probable and definite behavioural variant frontotemporal dementia (bvFTD), nonâfluent variant primary progressive aphasia (nfvPPA), semantic variant primary progressive aphasia (svPPA) and right temporal variant frontotemporal dementia (rtvFTD) from the Amsterdam Dementia Cohort, the Montreal Neurological Institute Cohort, the University of Ulm and Technical University of Munich Cohort (part of the German Consortium of Frontotemporal Lobal Degeneration), the Policlinico Milan Cohort and the Sydney FRONTIER Cohort. We compared sex distribution between genetic and sporadic FTD using Ï2 tests.ResultA total of 910 subjects were included (56.3% male), of whom 654 had bvFTD, 99 nfvPPA, 117 svPPA and 40 rtvFTD. Of these, 215 had genetic FTD and the sex distribution was equal (51.2% male), which did not differ significantly from sporadic FTD (57.8% male, Ï2 p=0.081). In the sporadic bvFTD subgroup, we found a male predominance (61.6% males compared to 52.9% males in the bvFTD genetic group, Ï 2 p=0.04). No sex distribution differences between sporadic and genetic cases were found in the other clinical FTD subgroups (all p>0.05).ConclusionDifferences in sex distribution between genetic and sporadic behavioural variant of FTD may provide important clues for its differential pathogenesis and warrants further research
Clinical Value of Longitudinal Serum Neurofilament Light Chain in Prodromal Genetic Frontotemporal Dementia
BACKGROUND AND OBJECTIVES: Elevated serum neurofilament light chain (NfL) is used to identify carriers of genetic frontotemporal dementia (FTD) pathogenic variants approaching prodromal conversion. Yet, the magnitude and timeline of NfL increase are still unclear. Here, we investigated the predictive and early diagnostic value of longitudinal serum NfL for the prodromal conversion in genetic FTD. METHODS: In a longitudinal observational cohort study of genetic FTD pathogenic variant carriers, we examined the diagnostic accuracy and conversion risk associated with cross-sectional and longitudinal NfL. Time periods relative to prodromal conversion (>3, 3-1.5, 1.5-0 years before; 0-1.5 years after) were compared with values of participants who did not convert. Next, we modeled longitudinal NfL and MRI volume trajectories to determine their timeline.RESULTS: We included 21 participants who converted (5 chromosome 9 open-reading frame 72 [C9orf72], 10 progranulin [GRN], 5 microtubule-associated protein tau [MAPT], and 1 TAR DNA-binding protein [TARDBP]) and 61 who did not (20 C9orf72, 30 GRN, and 11 MAPT). Participants who converted had higher NfL levels at all examined periods before prodromal conversion (median values 14.0-18.2 pg/mL; betas = 0.4-0.7, standard error [SE] = 0.1, p < 0.046) than those who did not (6.5 pg/mL) and showed further increase 0-1.5 years after conversion (28.4 pg/mL; beta = 1.0, SE = 0.1, p < 0.001). Annualized longitudinal NfL change was only significantly higher in participants who converted (vs. participants who did not) 0-1.5 years after conversion (beta = 1.2, SE = 0.3, p = 0.001). Diagnostic accuracy of cross-sectional NfL for prodromal conversion (vs. nonconversion) was good-to-excellent at time periods before conversion (area under the curve range: 0.72-0.92), improved 0-1.5 years after conversion (0.94-0.97), and outperformed annualized longitudinal change (0.76-0.84). NfL increase in participants who converted occurred earlier than frontotemporal MRI volume change and differed by genetic group and clinical phenotypes. Higher NfL corresponded to increased conversion risk (hazard ratio: cross-sectional = 6.7 [95% CI 3.3-13.7]; longitudinal = 13.0 [95% CI 4.0-42.8]; p < 0.001), but conversion-free follow-up time varied greatly across participants. DISCUSSION: NfL increase discriminates individuals who convert to prodromal FTD from those who do not, preceding significant frontotemporal MRI volume loss. However, NfL alone is limited in predicting the exact timing of prodromal conversion. NfL levels also vary depending on underlying variant-carrying genes and clinical phenotypes. These findings help to guide participant recruitment for clinical trials targeting prodromal genetic FTD.</p
Social cognition deficits and biometric signatures in the behavioural variant of Alzheimerâs disease
The behavioural variant of Alzheimerâs disease (bvAD) is characterized by early predominant behavioural changes, mimicking the behavioural variant of frontotemporal dementia (bvFTD), which is characterized by social cognition deficits and altered biometric responses to socioemotional cues. These functions remain understudied in bvAD. We investigated multiple social cognition components (i.e. emotion recognition, empathy, social norms and moral reasoning), using the Ekman 60 faces test, Interpersonal Reactivity Index, empathy eliciting videos, Social Norms Questionnaire and moral dilemmas, while measuring eye movements and galvanic skin response. We compared 12 patients with bvAD with patients with bvFTD (n = 14), typical Alzheimerâs disease (tAD, n = 13) and individuals with subjective cognitive decline (SCD, n = 13), using ANCOVAs and age- and sex-adjusted post hoc testing. Patients with bvAD (40.1 ± 8.6) showed lower scores on the Ekman 60 faces test compared to individuals with SCD (49.7 ± 5.0, P < 0.001), and patients with tAD (46.2 ± 5.3, P = 0.05) and higher scores compared to patients with bvFTD (32.4 ± 7.3, P = 0.002). Eye-tracking during the Ekman 60 faces test revealed no differences in dwell time on the eyes (all P > 0.05), but patients with bvAD (18.7 ± 9.5%) and bvFTD (19.4 ± 14.3%) spent significantly less dwell time on the mouth than individuals with SCD (30.7 ± 11.6%, P < 0.01) and patients with tAD (32.7 ± 12.1%, P < 0.01). Patients with bvAD (11.3 ± 4.6) exhibited lower scores on the Interpersonal Reactivity Index compared with individuals with SCD (15.6 ± 3.1, P = 0.05) and similar scores to patients with bvFTD (8.7 ± 5.6, P = 0.19) and tAD (13.0 ± 3.2, P = 0.43). The galvanic skin response to empathy eliciting videos did not differ between groups (all P > 0.05). Patients with bvAD (16.0 ± 1.6) and bvFTD (15.2 ± 2.2) showed lower scores on the Social Norms Questionnaire than patients with tAD (17.8 ± 2.1, P < 0.05) and individuals with SCD (18.3 ± 1.4, P < 0.05). No group differences were observed in scores on moral dilemmas (all P > 0.05), while only patients with bvFTD (0.9 ± 1.1) showed a lower galvanic skin response during personal dilemmas compared with SCD (3.4 ± 3.3 peaks per min, P = 0.01). Concluding, patients with bvAD showed a similar although milder social cognition profile and a similar eye-tracking signature to patients with bvFTD and greater social cognition impairments and divergent eye movement patterns compared with patients with tAD. Our results suggest reduced attention to salient facial features in these phenotypes, potentially contributing to their emotion recognition deficits.</p
Diagnostic accuracy of consensus diagnostic criteria for frontotemporal dementia in a memory clinic population
Background/Aims: The goal of the present study was to evaluate the diagnostic accuracy of the core diagnostic criteria for frontotemporal dementia (FTD) [Neary D, et al: Neurology 1998;51:1546-1554] within a memory clinic population. Methods: The 5 core diagnostic criteria for FTD were operationalised in an informant-based written questionnaire. For a diagnosis of FTD the total clinical picture was weighted with findings on additional investigations and possible exclusion criteria, with follow-up of at least 1 year. Results: The operationalised core criteria for FTD had a sensitivity of 79% (95% CI = 57-92) and a specificity of 90% (95% CI = 85-94). Conclusion: The core diagnostic criteria for FTD applied in a caregiver questionnaire have good diagnostic accuracy among subjects without advanced dementia attending a memory clinic. This stresses the importance of the informant-based history in the differential diagnosis of dementia. Copyrigh
CSF proteomics in autosomal dominant Alzheimer's disease highlights parallels with sporadic disease
Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q < 0.05). The most strongly upregulated proteins (fold change >1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P < 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.</p
Cognitive composites for genetic frontotemporal dementia: GENFI-Cog
Background: Clinical endpoints for upcoming therapeutic trials in frontotemporal dementia (FTD) are increasingly urgent. Cognitive composite scores are often used as endpoints but are lacking in genetic FTD. We aimed to create cognitive composite scores for genetic frontotemporal dementia (FTD) as well as recommendations for recruitment and duration in clinical trial design. Methods: A standardized neuropsychological test battery covering six cognitive domains was completed by 69 C9orf72, 41 GRN, and 28 MAPT mutation carriers with CDRÂź plus NACC-FTLD â„ 0.5 and 275 controls. Logistic regression was used to identify the combination of tests that distinguished best between each mutation carrier group and controls. The composite scores were calculated from the weighted averages of test scores in the models based on the regression coefficients. Sample size estimates were calculated for individual cognitive tests and composites in a theoretical trial aimed at preventing progression from a prodromal stage (CDRÂź plus NACC-FTLD 0.5) to a fully symptomatic stage (CDRÂź plus NACC-FTLD â„ 1). Time-to-event analysis was performed to determine how quickly mutation carriers progressed from CDRÂź plus NACC-FTLD = 0.5 to â„ 1 (and therefore how long a trial would need to be). Results: The results from the logistic regression analyses resulted in different composite scores for each mutation carrier group (i.e. C9orf72, GRN, and MAPT). The estimated sample size to detect a treatment effect was lower for composite scores than for most individual tests. A Kaplan-Meier curve showed that after 3 years, ~ 50% of individuals had converted from CDRÂź plus NACC-FTLD 0.5 to â„ 1, which means that the estimated effect size needs to be halved in sample size calculations as only half of the mutation carriers would be expected to progress from CDRÂź plus NACC FTLD 0.5 to â„ 1 without treatment over that time period. Discussion: We created gene-specific cognitive composite scores for C9orf72, GRN, and MAPT mutation carriers, which resulted in substantially lower estimated sample sizes to detect a treatment effect than the individual cognitive tests. The GENFI-Cog composites have potential as cognitive endpoints for upcoming clinical trials. The results from this study provide recommendations for estimating sample size and trial duration
- âŠ